多目标跟踪--统一跟踪框架论文解读

本文介绍了商汤科技的多目标跟踪论文,提出了一种结合单目标跟踪、ReID网络和数据关联的统一跟踪框架。通过Siamese-RPN捕捉短期线索,ReID网络提供长期线索,以及切换器感知分类(SAC)来有效解决ID切换问题。在MOT17中,该方法取得了最佳排名,显示出其在解决跟踪难题上的优势。SAC分类器的训练和二分图构造策略为跟踪性能带来了显著提升,类似于Repulsion Loss的思想,考虑了潜在ID切换器的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

商汤等新出的多目标跟踪论文Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification。该论文提出了一个融入单目标跟踪网络、ReID网络和数据关联的统一多目标跟踪(MOT)框架。单目标跟踪网络借鉴目前在VOT领域中的最新研究成果Siamese-RPN 用于捕获短期线索有助于补偿检测器由于物体遮挡造成的漏检,解决跟丢问题;ReID 网络用于提取长期线索(提取并累积辨别性的表观特征)避免发生遮挡时的严重错误,解决跟飘问题;而在数据关联中提出了切换器感知分类方法(SAC,switcher-aware classification)以有效的方式组合长短期线索,解决ID 切换问题。统一框架如下图:
在这里插入图片描述
该论文提出的统一框架针对多目标跟踪中的难题对症下药,在MOT17中基于该方法的改进确实取得了最佳排名,刷榜的存在:
在这里插入图片描述
下面详细解读自认为该文最大的创新之处,数据关联阶段提出的解决方案。对于当前帧,检测器的结果定义为 D d e t D_{det} Ddet;各轨迹通过Siamese-RPN得到当前帧的预测定义为 D t r a c k D_{track} Dtrack;各轨迹分别维护通过ReID 网络(基础网络为GoogLeNet Inception-v4)累计的K个最优历史表观特征,定义为 { A i } i = 1 K \{A_i\}_{i=1}^K { Ai}i=1K,注意文中利用Resnet-18网络来计算最优的度量(输出0~1值,训练其实就是一个二分类器,正样本为与ground truth交并比大于0.6,其余为负样本);而检测结果对应的表观特征定义为 A d e t A_{det} A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值