Lagrange multipliers - 拉格朗日乘子法

拉格朗日乘子法用于解决多元函数在等式约束下的极值问题,将约束融入目标函数,通过求解梯度为零的条件找到最优解。文章介绍了数学原理,包括等式约束和不等式约束的情况,并阐述了KKT条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lagrange multipliers - 拉格朗日乘子法

拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法。>通过引入拉格朗日乘子,可将有 D 个变量与 K 个约束条件的最优化问题转化为具有 D+K 个变量的无约束优化问题求解。本文主要讲解其中的数学原理,并引入KKT条件。

先考虑一个简单的等式约束的优化问题。假定 x 为2维向量,欲寻找 x 的某个取值 x ,即使目标函数 f(x1,x2) 最小且同时满足 g(x1,x2)=0 的约束。针对此问题,通常的做法包含3步:首先,根据约束条件 g(x1,x2)=0 得到 x2 关于 x1 的表达式,即 x2=h(x1) ;其次,将 x2=h(x1) 带入目标函数中即 f(x1,h(x1)) ,这样得到关于 x1 单变量的优化问题;最后,将目标函数对 x1 求导数,即可得到其最优值 x1

### Matlab 中实现拉格朗日乘子法 #### 使用 `fmincon` 函数解决约束优化问题 在 MATLAB 中,可以使用内置函数 `fmincon` 来处理带有不等式和/或等式约束的非线性规划问题。该方法内部实现了拉格朗日乘子法来寻找最优解。 对于给定的目标函数 \( f(x) \),并存在若干个等式约束 \( c_i(x)=0 \) 和不等式约束 \( ceq_j(x)\leq 0 \),可以通过定义这些关系作为输入参数传递给 `fmincon` 函数[^1]。 下面是一个简单的例子展示如何设置此类问题: ```matlab % 定义变量初值 x0 = [1, 2]; % 设置上下界 (如果有的话) lb = []; % 下限为空表示无下限 ub = []; % 上限为空表示无上限 % 非线性约束条件 nonlcon = @(x)[x(1)^2 + x(2)^2 - 1; % 不等式约束: x1^2+x2^2<=1 x(1)*x(2)-1]; % 等式约束: x1*x2=1 % 调用fmincon求解器 [x,fval] = fmincon(@(X) X(1)^2+X(2)^2,x0,[],[],[],[],lb,ub,@nonlcon); disp(['Optimal solution found at ', num2str(x)]); disp(['Objective function value is ', num2str(fval)]); ``` 这段代码展示了如何构建一个具有两个决策变量、一个圆盘内的区域限制(即 \(x_1^2 + x_2^2\leqslant 1\))和平面上一条直线上的位置限定 (\(x_1 * x_2 = 1\)) 的最小化平方距离问题模型,并调用了 `fmincon` 进行求解。 #### 绘制不同拉格朗日乘子下的函数图像 为了更好地理解拉格朗日乘数的影响,还可以绘制出不同的拉格朗日乘子对应的函数图形。这有助于直观感受各个参数变化时对最终结果产生的影响[^2]。 ```matlab lambda_values = linspace(-5, 5, 10); % 创建一系列λ值 [X,Y] = meshgrid(linspace(-2*pi,2*pi)); figure; hold on; for lambda = lambda_values' Z = sin(X).*cos(Y)+lambda*(exp(-(X.^2+Y.^2))-0.7); surf(X,Y,Z,'EdgeColor','none'); end xlabel('X axis'); ylabel('Y axis'); zlabel('Z axis'); title('Lagrange Function with Different Multipliers'); colorbar; legend(arrayfun(@(n)sprintf('Lambda=%.2f', n), lambda_values, 'UniformOutput', false)); view([30 30]); shading interp; lighting gouraud; axis tight equal; camlight headlight; material shiny; ``` 上述脚本会生成一组三维曲面图,其中每个曲面对应于特定的 λ 值组合而成的新目标函数形式。通过观察这些图表可以帮助更深刻地认识拉格朗日乘子的作用机制及其物理意义。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值