视频跟踪学习连接 Tracking Link

原创 2016年05月30日 17:17:21

视频跟踪汇总:http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark.html 这个连接绝对要点 包括很多跟踪算法的matlab源码、数据集、以及性能测试等。

STRUCK跟踪算法:
比较好的学习连接:http://blog.csdn.net/sunboyiris/article/details/38150411#reply

SCM跟踪算法
主页:http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm

Abstract
In this paper we propose a robust object tracking algorithm using a collaborative model.

As the main challenge for object tracking is to account for drastic appearance change, we propose a robust appearance model that exploits both holistic templates and local representations.

We develop a sparsity-based discriminative classifier (SDC) and a sparsity-based generative model (SGM). In the SDC module, we introduce an effective method to compute the confidence value that assigns more weights to the foreground than the background. In the SGM module, we propose a novel histogram-based method that takes the spatial information of each patch into consideration with an occlusion handing scheme.

Furthermore, the update scheme considers both the latest observations and the original template, thereby enabling the tracker to deal with appearance change effectively and alleviate the drift problem.

Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.

一个比较好的学习连
接:http://blog.csdn.net/Quincuntial/article/details/50555834

CMT跟踪算法:
官方主页 http://www.gnebehay.com/cmt/

比较好的学习连接:
http://blog.csdn.net/roamer_nuptgczx/article/details/47953357
工作原理就直接copy过来了。详细的看官方说明:

How does it work?
The main idea behind CMT is to break down the object of interest into tiny parts, known as keypoints. In each frame, we try to again find the keypoints that were already there in the initial selection of the object of interest. We do this by employing two different kind of methods. First, we track keypoints from the previous frame to the current frame by estimating what is known as its optic flow. Second, we match keypoints globally by comparing their descriptors. As both of these methods are error-prone, we employ a novel way of looking for consensus within the found keypoints by letting each keypoint vote for the object center, as shown in the following image.

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

ECO: Efficient Convolution Operators for Tracking视频目标跟踪论文笔记(PPT版)

论文标题:ECO: Efficient Convolution Operators for Tracking 作者:Martin Danelljn 发表会议:CVPR,2017(目前的状态为已录用) ...

双层视频跟踪模型-CVPR11_robust tracking模型

受今年暑假Summer School中讲cv中多类分类的Ales教授影响,看了一篇他们组2011年发表在ICCV上的一篇文章《An adaptive coupled-layer visual mode...

视频跟踪论文读后感系列二:Online Selection Of Discriminative Tracking Features(PAMI2005)

Abstract This paper presents an online feature selection mechanism for evaluating multiple feature...

视频跟踪领域总结全面 Resources in Visual Tracking

http://blog.csdn.net/minstyrain/article/details/38640541 这个应该是目前最全的Tracking相关的文章了,转载请注明出处。 一、S...

[Robust Tracking]视频跟踪MEEM — 多专家模型

[Robust Tracking]MEEM算法 —— 多专家模型 本文的main idea是提出一个多专家模型和半监督损失函数。针对模型漂移问题,实质上就是因为tracker中dad update才会...

Tracking-Learning-Detection TLD解析三 - Learning学习(跟踪与检测的协调与更新)

在上一篇跟踪器与检测器(tracker and detector)中,我们已经详细介绍了TLD中跟踪器与检测器的设计方案,而在具体运行过程中需要对二者进行调和,所谓调和主要指两方面: 1.对二者输出...

手势跟踪论文学习:Realtime and Robust Hand Tracking from Depth(五)Hand Initialization 2

论文阅读原创,转载标明出处: 回顾: 上一节我们说到了,作者通过自己定义的X-Y Finger和 Z-Finger来进行手指的检测,然后来初始化Hand Pose。其实勒,手指经常都会死斜着的。也...

<<High-Speed Tracking with Kernelized Correlation Filters>> KCF(核化相关滤波)跟踪算法学习笔记

在Word上编辑,转为图片发布,文中所用链接附在文末,文中可能有错别字,如妨碍阅读请留言。 论文作者主页: http://www.robots.ox.ac.uk/~joao/# ...

手势跟踪论文学习:Realtime and Robust Hand Tracking from Depth(二)

论文细节 手势识别或者说手的跟踪在人机交互中非常重要,已经有几十年的研究。但是它存在的难点还是很多的:手的动作是由很多的复杂的手指的活动构成的,同时,在可变的大视角下面的快速移动。   目前做出...

【SQL Server学习笔记】更改跟踪(Chang Tracking)

今天有一个语句在输入查询条件为2012-02-01时,查询速度15s左右,但是输入条件改为2012-03-01时,查询速度2分钟左右,一开始认为是否是因为第二个语句没有重新编译,它重用了第一个查询的执...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)