视频跟踪学习连接 Tracking Link

原创 2016年05月30日 17:17:21

视频跟踪汇总:http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark.html 这个连接绝对要点 包括很多跟踪算法的matlab源码、数据集、以及性能测试等。

STRUCK跟踪算法:
比较好的学习连接:http://blog.csdn.net/sunboyiris/article/details/38150411#reply

SCM跟踪算法
主页:http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm

Abstract
In this paper we propose a robust object tracking algorithm using a collaborative model.

As the main challenge for object tracking is to account for drastic appearance change, we propose a robust appearance model that exploits both holistic templates and local representations.

We develop a sparsity-based discriminative classifier (SDC) and a sparsity-based generative model (SGM). In the SDC module, we introduce an effective method to compute the confidence value that assigns more weights to the foreground than the background. In the SGM module, we propose a novel histogram-based method that takes the spatial information of each patch into consideration with an occlusion handing scheme.

Furthermore, the update scheme considers both the latest observations and the original template, thereby enabling the tracker to deal with appearance change effectively and alleviate the drift problem.

Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.

一个比较好的学习连
接:http://blog.csdn.net/Quincuntial/article/details/50555834

CMT跟踪算法:
官方主页 http://www.gnebehay.com/cmt/

比较好的学习连接:
http://blog.csdn.net/roamer_nuptgczx/article/details/47953357
工作原理就直接copy过来了。详细的看官方说明:

How does it work?
The main idea behind CMT is to break down the object of interest into tiny parts, known as keypoints. In each frame, we try to again find the keypoints that were already there in the initial selection of the object of interest. We do this by employing two different kind of methods. First, we track keypoints from the previous frame to the current frame by estimating what is known as its optic flow. Second, we match keypoints globally by comparing their descriptors. As both of these methods are error-prone, we employ a novel way of looking for consensus within the found keypoints by letting each keypoint vote for the object center, as shown in the following image.

基于Deep Learning的跟踪算法总结(三)

本文是博主对最近看的相关跟踪算法的总结,其中的算法有一些不是基于深度学习的。另外本文只是对各篇论文的核心亮点简单描述,同时加上博主自己的一些看法。本文仅作为学习笔记,供学习交流,如果有什么错误或疑问,...
  • whfshuaisi
  • whfshuaisi
  • 2017年04月18日 16:43
  • 3687

MTT和S-MTT 跟踪器阅读总结

文章:Robust Visual Tracking via Structured Multi-Task Sparse Learning 作者:Tianzhu Zhang · Bernard Ghan...
  • lijinjyan
  • lijinjyan
  • 2014年11月06日 17:13
  • 747

Tracking-Learning-Detection TLD解析三 - Learning学习(跟踪与检测的协调与更新)

在上一篇跟踪器与检测器(tracker and detector)中,我们已经详细介绍了TLD中跟踪器与检测器的设计方案,而在具体运行过程中需要对二者进行调和,所谓调和主要指两方面: 1.对二者输出...
  • outstandinger
  • outstandinger
  • 2013年06月04日 17:12
  • 4248

网站跟踪(web tracking)的原理

网站跟踪并不是什么新的技术,而只是一种比较常见的应用,甚至都谈不上新。这里想跟大家分享一下,里面有我的一些想法和思考,如果有不准确的地方,还请不吝赐教。为什么要跟踪现在大家对隐私都比较敏感,而且对互联...
  • zdavb
  • zdavb
  • 2015年07月30日 14:08
  • 855

Struck跟踪算法介绍及代码解读(一)

一.引言
  • qianxin_dh
  • qianxin_dh
  • 2014年09月18日 20:36
  • 7872

CVPR 2013 录用论文(目标跟踪部分)

完整录用论文官方链接:http://www.pamitc.org/cvpr13/program.php 今天CVPR有open access,真是造福大众啊 今年有关RGB-D摄像机应用和研究的论...
  • gxf1027
  • gxf1027
  • 2013年03月08日 15:42
  • 24743

《OpenCV3编程入门》学习笔记番外篇之目标跟踪object tracking

这里介绍一下使用OpenCV进行目标跟踪的方法,之前用过一点。OpenCV中目标跟踪的一些比较新的方法(比如MIL、KCF、TLD等)都在opencv_contrib库里,所以首先你需要安装它,详见O...
  • NNNNNNNNNNNNY
  • NNNNNNNNNNNNY
  • 2016年11月08日 09:54
  • 3516

(学习笔记)第六章 非刚性人脸跟踪——Face tracking(人脸跟踪)

(学习笔记)第六章 非刚性人脸跟踪——Face tracking(人脸跟踪) 转载请注明:http://blog.csdn.net/raby_gyl/article/details/14452471...
  • lphbtm
  • lphbtm
  • 2016年02月02日 09:22
  • 2869

计算机视觉-论文阅读笔记-基于高性能检测器与表观特征的多目标跟踪

这篇笔记主要是对今年ECCV2016上的论文:POI:Multiple Object Tracking with High Performance Detection and Appearance F...
  • wzmsltw
  • wzmsltw
  • 2016年12月16日 11:50
  • 3000

深度学习tracking学习笔记(3):TLD(Tracking-Learning-Detection)学习与源码理解

zouxy09@qq.com http://blog.csdn.net/zouxy09            TLD(Tracking-Learning-Detection)是英国萨里大学的一个...
  • u011534057
  • u011534057
  • 2016年06月23日 11:09
  • 3739
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:视频跟踪学习连接 Tracking Link
举报原因:
原因补充:

(最多只允许输入30个字)