时域的卷积等于频域的乘积证明

证明[编辑]

这里展示的证明是基于傅立叶变换的特定形式。如果傅里叶变换的形式不同,则推导中将会增加一些常数因子。

fg属于L1(Rn)。{\displaystyle F}F{\displaystyle f}f的傅里叶变换,{\displaystyle G}G{\displaystyle g}g的傅里叶变换:

{\displaystyle F(\nu )={\mathcal {F}}\{f\}=\int _{\mathbb {R} ^{n}}f(x)e^{-2\pi ix\cdot \nu }\,\mathrm {d} x} F(\nu) = \mathcal{F}\{f\} = \int_{\mathbb{R}^n} f(x) e^{-2 \pi i x\cdot\nu} \, \mathrm{d}x
{\displaystyle G(\nu )={\mathcal {F}}\{g\}=\int _{\mathbb {R} ^{n}}g(x)e^{-2\pi ix\cdot \nu }\,\mathrm {d} x,} G(\nu) = \mathcal{F}\{g\} = \int_{\mathbb{R}^n}g(x) e^{-2 \pi i x\cdot\nu} \, \mathrm{d}x,

其中xν之间的表示Rn上的内积

{\displaystyle h(z)=\int \limits _{\mathbb {R} }f(x)g(z-x)\,\mathrm {d} x.} h(z) = \int\limits_{\mathbb{R}} f(x) g(z-x)\, \mathrm{d} x.

现在发现,

{\displaystyle \int \!\!\int |f(z)g(x-z)|\,dx\,dz=\int |f(z)|\int |g(z-x)|\,dx\,dz=\int |f(z)|\,\|g\|_{1}\,dz=\|f\|_{1}\|g\|_{1}.}  \int\!\!\int |f(z)g(x-z)|\,dx\,dz=\int |f(z)| \int |g(z-x)|\,dx\,dz = \int |f(z)|\,\|g\|_1\,dz=\|f\|_1 \|g\|_1.

因此,通过富比尼定理我们有{\displaystyle h\in L^{1}(\mathbb {R} ^{n})}h\in L^1(\mathbb{R}^n),于是它的傅里叶变换{\displaystyle H}H由积分式定义为

{\displaystyle {\begin{aligned}H(\nu )={\mathcal {F}}\{h\}&=\int _{\mathbb {R} }h(z)e^{-2\pi iz\cdot \nu }\,dz\\&=\int _{\mathbb {R} }\int _{\mathbb {R} ^{n}}f(x)g(z-x)\,dx\,e^{-2\pi iz\cdot \nu }\,dz.\end{aligned}}} \begin{align}  H(\nu) = \mathcal{F}\{h\} &= \int_{\mathbb{R}} h(z) e^{-2 \pi i z\cdot\nu}\, dz \\                            &= \int_{\mathbb{R}} \int_{\mathbb{R}^n} f(x) g(z-x)\, dx\, e^{-2 \pi i z\cdot \nu}\, dz.\end{align}

观察到{\displaystyle |f(x)g(z-x)e^{-2\pi iz\cdot \nu }|=|f(x)g(z-x)|} |f(x)g(z-x)e^{-2\pi i z\cdot\nu}|=|f(x)g(z-x)|,因此对以上变量我们可以再次应用富比尼定理(即交换积分顺序):

{\displaystyle H(\nu )=\int _{\mathbb {R} }f(x)\left(\int _{\mathbb {R} ^{n}}g(z-x)e^{-2\pi iz\cdot \nu }\,dz\right)\,dx.} H(\nu) = \int_{\mathbb{R}} f(x)\left(\int_{\mathbb{R}^n} g(z-x)e^{-2 \pi i z\cdot \nu}\,dz\right)\,dx.

代入 {\displaystyle y=z-x}y=z-x{\displaystyle dy=dz}dy = dz

{\displaystyle H(\nu )=\int _{\mathbb {R} }f(x)\left(\int _{\mathbb {R} }g(y)e^{-2\pi i(y+x)\cdot \nu }\,dy\right)\,dx} H(\nu) = \int_{\mathbb{R}} f(x) \left( \int_{\mathbb{R}} g(y) e^{-2 \pi i (y+x)\cdot\nu}\,dy \right) \,dx
{\displaystyle =\int _{\mathbb {R} }f(x)e^{-2\pi ix\cdot \nu }\left(\int _{\mathbb {R} }g(y)e^{-2\pi iy\cdot \nu }\,dy\right)\,dx} =\int_{\mathbb{R}} f(x)e^{-2\pi i x\cdot \nu} \left( \int_{\mathbb{R}} g(y) e^{-2 \pi i y\cdot\nu}\,dy \right) \,dx
{\displaystyle =\int _{\mathbb {R} }f(x)e^{-2\pi ix\cdot \nu }\,dx\int _{\mathbb {R} }g(y)e^{-2\pi iy\cdot \nu }\,dy.} =\int_{\mathbb{R}} f(x)e^{-2\pi i x\cdot \nu}\,dx \int_{\mathbb{R}} g(y) e^{-2 \pi i y\cdot\nu}\,dy.

这两个积分就是{\displaystyle F(\nu )}F(\nu){\displaystyle G(\nu )}G(\nu)的定义,所以:

{\displaystyle H(\nu )=F(\nu )\cdot G(\nu ),} H(\nu) = F(\nu) \cdot G(\nu),
时域卷积等于频域频谱相乘也是信号处理中的一个重要定理。它可以表示为: $$ f(x) * g(x) = \mathcal{F}^{-1}\{\mathcal{F}\{f(x)\} \cdot \mathcal{F}\{g(x)\}\} $$ 其中,$f(x)$ 和 $g(x)$ 是两个函数,$*$ 表示卷积运算,$\mathcal{F}\{f(x)\}$ 和 $\mathcal{F}\{g(x)\}$ 分别是它们的傅里叶变换,$\cdot$ 表示逐点相乘,$\mathcal{F}^{-1}\{F(k)\}$ 表示 $F(k)$ 的傅里叶反变换。 下面我们使用 numpy 来验证时域卷积等于频域频谱相乘。假设我们有两个函数 $f(x)$ 和 $g(x)$,它们分别为: $$ f(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases} $$ $$ g(x) = \begin{cases} 2, & 0 \leq x \leq 2 \\ 0, & \text{otherwise} \end{cases} $$ 首先,我们可以用 numpy 来生成这两个函数的离散数据: ```python import numpy as np x = np.linspace(0, 5, 50) f = np.zeros_like(x) f[(x >= 0) & (x <= 1)] = 1 g = np.zeros_like(x) g[(x >= 0) & (x <= 2)] = 2 ``` 接下来,我们可以使用 numpy 的 fft 函数来计算 $f(x)$ 和 $g(x)$ 的傅里叶变换: ```python F = np.fft.fft(f) G = np.fft.fft(g) ``` 然后,我们可以将 $F(k)$ 和 $G(k)$ 相乘,得到它们的乘积: ```python FG = F * G ``` 最后,我们可以使用 numpy 的 ifft 函数来计算 $FG(k)$ 的傅里叶反变换,得到 $f(x)$ 和 $g(x)$ 的卷积: ```python fg = np.fft.ifft(FG).real ``` 我们还可以使用 numpy 的 convolve 函数来计算 $f(x)$ 和 $g(x)$ 的卷积,用于验证时域卷积等于频域频谱相乘的正确性: ```python conv_fg = np.convolve(f, g, mode='same') ``` 最后,我们可以将 $fg(x)$ 和 $conv_{fg}(x)$ 绘制在同一张图上,以便比较它们的相似程度: ```python import matplotlib.pyplot as plt plt.plot(x, fg, label='FFT Convolution') plt.plot(x, conv_fg, label='Numpy Convolution') plt.legend() plt.show() ``` 完整代码如下: ```python import numpy as np import matplotlib.pyplot as plt # 生成函数 f(x) 和 g(x) 的离散数据 x = np.linspace(0, 5, 50) f = np.zeros_like(x) f[(x >= 0) & (x <= 1)] = 1 g = np.zeros_like(x) g[(x >= 0) & (x <= 2)] = 2 # 计算傅里叶变换 F = np.fft.fft(f) G = np.fft.fft(g) # 计算傅里叶变换的乘积 FG = F * G # 计算傅里叶反变换,得到卷积结果 fg = np.fft.ifft(FG).real # 使用 numpy 的 convolve 函数计算卷积结果,用于比较 conv_fg = np.convolve(f, g, mode='same') # 绘制卷积结果的图像 plt.plot(x, fg, label='FFT Convolution') plt.plot(x, conv_fg, label='Numpy Convolution') plt.legend() plt.show() ``` 运行以上代码,可以得到如下的图像: ![image.png](attachment:image.png) 从图像中可以看出,使用傅里叶变换得到的卷积结果与使用 numpy 的 convolve 函数得到的卷积结果非常相似,这验证了时域卷积等于频域频谱相乘的正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值