这是CVPR 2015拿到best paper候选的论文。
论文下载地址:Fully Convolutional Networks for Semantic Segmentation
尊重原创,转载请注明:http://blog.csdn.net/tangwei2014
1.概览&主要贡献
提出了一种end-to-end的做semantic segmentation的方法,简称FCN。
如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让网络做pixelwise的prediction,直接预测label map。

本文详细介绍了FCN(全卷积网络)在语义分割任务中的应用,通过将传统网络的全连接层转换为卷积层,实现端到端的像素级预测。论文中提出了in-network upsampling层(反卷积)来恢复分辨率,并使用skip layer融合不同层的信息,提升分割精度。实验结果显示,FCN在语义分割领域取得了当时最优的性能。
最低0.47元/天 解锁文章
1万+





