HDU1258 POJ1564 UVA574 UVALive5319 ZOJ1711 Sum It Up【DFS】

本文介绍了一个经典的算法问题,即寻找一组数中哪些数的组合能够加起来等于一个给定的目标值。该问题可以通过深度优先搜索(DFS)解决,并在搜索过程中去除重复解以提高效率。

 

Sum It Up

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 7926 Accepted: 4068

 

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source

Mid-Central USA 1997

 

 

 

 

Regionals 1997 >> North America - Mid-Central USA

 

问题链接HDU1258POJ1564 UVA574 UVALive5319 ZOJ1711 Sum It Up

题意简述:参见上文。

问题分析

这个问题是给出一个和,给出若干个正整数,求其哪几组数相加等于指定的和。可以使用DFS来实现。

关键是搜索过程中要去掉重复的解。

DFS属于回溯法,在搜索过程中也可以使用已知条件进行剪枝以加快速度。

程序说明:本程序中,当和的剩余部分小于最小整数值时,不是继续搜索而是回溯,可以加快搜索速度。

 

AC通过的C语言程序如下:

 

/* HDU1258 POJ1564 UVA574 UVALive5319 ZOJ1711 Sum It Up */

#include <stdio.h>
#include <memory.h>

#define MAXN 15

int data[MAXN];
int kcount[MAXN];
int dsum[MAXN];
int ans[MAXN];
int kind;
int residue;
int count;

void print_result()
{
    int i, j, k;
    for(i=0, j=0; i<kind; i++) {
        for(k=1; k<=ans[i]; k++) {
            if(j == 0)
                printf("%d", data[i]);
            else
                printf("+%d", data[i]);
            j++;
        }
    }
    printf("\n");
}

void dfs(int k)
{
    int i;

    if(k == kind || dsum[k] < residue)
        return;

    for(i=kcount[k]; i>=0; i--) {
        residue -= i * data[k];
        if(residue < 0) {
            ;
        } else if(residue == 0) {
            ans[k] = i;
            count++;
            print_result();
            ans[k] = 0;
        }  else if(residue > 0 && residue >= data[kind-1]) {
            ans[k] = i;
            dfs(k+1);
            ans[k] = 0;
        }
        residue += i * data[k];
    }
}

int main(void)
{
    int total, n, sum, i;

    while(scanf("%d%d", &total, &n) != EOF) {
        // 判定结束条件
        if(total == 0 && n == 0)
            break;

        // 读入数据,并求和
        sum = 0;
        for(i=0; i<n; i++) {
            scanf("%d", &data[i]);
            sum += data[i];
        }

        // 整理:同值合并
        for(i=1, kind=0, kcount[0]=1; i<n; i++) {
            if(data[i] == data[kind])
                kcount[kind]++;
            else {
                data[++kind] = data[i];
                kcount[kind] = 1;
            }
        }
        kind++;

        // 计算总和:dsum[i]为第i类之后各个数的总和
        dsum[0] = sum;
        for(i=1; i<kind; i++)
            dsum[i] = dsum[i-1] - data[i-1] * kcount[i-1];

        // 输出第一行
        printf("Sums of %d:\n", total);

        // 深度优先搜索,并输出结果
        count = 0;
        residue = total;
        memset(ans, 0, sizeof(ans));
        dfs(0);

        // 输出结果
        if(count == 0)
            printf("NONE\n");
    }

    return 0;
}

 

 

 

 

 

### 问题解析 “四个数之和等于零”(Four Sum)是一个经典的算法问题,通常要求在给定的整数数组中找出所有不重复的四元组 `(a, b, c, d)`,使得 `a + b + c + d = 0`。该问题可以通过多种方式解决,包括暴力枚举、双指针法以及哈希表优化的方法。 --- ### 解法一:排序 + 双指针法 此方法的时间复杂度为 **O(n&sup3;)**,适用于大多数中等规模的输入数据。 #### 核心思想: 1. 对数组进行排序。 2. 使用两个外层循环固定前两个元素。 3. 使用双指针法在剩余部分中寻找另外两个元素,使其总和为 `-target`(即当前两个元素的和的负值)。 #### 示例代码: ```java import java.util.*; public class Solution { public List<List<Integer>> fourSum(int[] nums, int target) { List<List<Integer>> res = new ArrayList<>(); Arrays.sort(nums); int n = nums.length; for (int i = 0; i < n - 3; i++) { if (i > 0 && nums[i] == nums[i - 1]) continue; // 去重 for (int j = i + 1; j < n - 2; j++) { if (j > i + 1 && nums[j] == nums[j - 1]) continue; // 去重 int left = j + 1; int right = n - 1; while (left < right) { long sum = (long) nums[i] + nums[j] + nums[left] + nums[right]; if (sum == target) { res.add(Arrays.asList(nums[i], nums[j], nums[left], nums[right])); while (left < right && nums[left] == nums[left + 1]) left++; // 去重 while (left < right && nums[right] == nums[right - 1]) right--; // 去重 left++; right--; } else if (sum < target) { left++; } else { right--; } } } } return res; } } ``` --- ### 解法二:哈希表优化 这种方法通过使用哈希表来减少一层循环,时间复杂度理论上仍为 **O(n&sup3;)**,但在某些情况下可以提高效率。 #### 核心思想: 1. 遍历数组中的两个元素,并将它们的和与对应的索引对存储到哈希表中。 2. 再次遍历数组中的两个元素,查找是否存在目标和的补集。 #### 注意事项: - 此方法需要额外处理去重逻辑,否则容易产生重复的四元组。 - 实现相对复杂,但适用于特定场景下的性能优化。 --- ### 复杂度分析 | 方法 | 时间复杂度 | 空间复杂度 | 是否推荐 | |------|-------------|--------------|-----------| | 排序 + 双指针法 | O(n&sup3;) | O(1)(不考虑结果空间) | ✅ 推荐 | | 哈希表法 | O(n&sup3;) | O(n&sup2;) | ❌ 不推荐,实现复杂且效率未必更高 | --- ### 常见变体 - **Four Sum II**:将问题扩展为四个不同数组中各取一个元素,使得总和为零。此时可以使用哈希表优化,时间复杂度为 **O(n&sup2;)** [^4]。 - **K Sum**:推广到任意数量的元素求和为零的问题,通常采用递归分治的方式解决。 --- ### 相关问题 1. 如何高效解决三数之和为零的问题? 2. Four Sum II 问题的解法与原始 Four Sum 有何不同? 3. 在 K Sum 问题中如何利用递归进行求解? 4. 如何避免 Four Sum 中的重复四元组? [^4]: 四数之和 II 的解法基于哈希表,先计算前两个数组的所有可能和并记录出现次数,再遍历后两个数组查找互补值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值