ultralytics-yolo-webui 项目介绍及使用演示

项目概述
ultralytics-yolo-webui 是一个基于 Ultralytics YOLO 框架的 WebUI 工具(由 DataBall 开发),旨在提供可视化界面简化 YOLO 目标检测模型的训练、推理及数据预处理流程,降低目标检测任务的使用门槛。
项目地址:XIAN-HHappy/ultralytics-yolo-webui: ultralytics-yolo-webui
核心功能
-
数据预处理:支持将 XML 格式的标注文件转换为 YOLO 所需的 TXT 格式,并能自动划分训练集、验证集和测试集,生成符合 YOLO 要求的数据集结构及配置文件(data.yaml)。
-
模型训练:通过 Web 界面配置训练参数(如数据集路径、优化器、epochs、图像尺寸、批量大小等),基于 Ultralytics YOLO 框架进行模型训练,支持指定预训练模型进行微调。
-
模型推理:加载训练好的模型权重,对输入图像进行目标检测,可视化展示检测结果(包含边界框、类别及置信度)。
快速开始
安装依赖:
pip install -r requirements.txt
启动 WebUI:
python webui_det.py
使用流程:
- 步骤 1:数据预处理(XML 转 TXT 标签 → 划分数据集并生成配置文件)
- 步骤 2:模型训练(配置参数 → 启动训练)
- 步骤 3:模型推理(加载权重 → 输入图像 → 查看检测结果)
依赖库:
- 前端框架:Gradio(用于构建 Web 交互界面)
- 核心框架:Ultralytics(YOLO 模型实现)
- 其他工具:OpenCV(图像处理)、Supervision(检测结果可视化)等。
视频使用演示:

471

被折叠的 条评论
为什么被折叠?



