漫步凸分析三——凸集代数

有许多种代数运算可以保留凸性。

例如,如果 C Rn中的凸集,那么所有平移操作 C+a 和标量乘法 λC 同样是凸集,其中

λC={λx|xC}

从几何上看,如果 λ>0 ,那么 λC 就是 C 伸缩λ倍得到的图像。

过原点 C 的对称反射是C=(1)C,对于凸集 C ,如果C=C,我们就说这个凸集是对称的。这样的凸集(如果非空)一定包含原点,因为它除了包含每个向量 x x外,还包含 x x之间的线段。对称的非空凸锥是子空间(定理2.7)。

定理3.1 如果 C1,C2 Rn 中的凸集,那么他们的和 C1+C2 依然是凸集,其中

C1+C2={x1+x2|x1C1,x2C2}

证明:令 x,y C1+C2 中的点,那么存在 x1,y1C1,x2,y2C2 使得

x=x1+x2,y=y1+y2

对于 0<λ<1 ,我们有

(1λ)x+λy=[(1λ)x1+λy1]+[(1λ)x2+λy2]

然后利用 C1,C2 的凸性

(1λ)x1+λy1C1,(1λ)x2+λy2C2

可以得出 (1λ)x+λy 属于 C1+C2 ||

我们举例说明,如果 C1 是任意凸集, C2 是非负象限,那么

C1+C2={x1+x2|x1C1,x20}={x|x1C1,x1x}

根据定理3.1,当 C1 是凸集时,后面的集合是凸的。

根据定义,集合 C 为凸意味着

(1λ)C+λCC,0<λ<1

我们一会儿会看到,对于凸集而言等式的情况也是成立的。一个集合 K ,当且仅当对于所有λ>0时, λKK 恒成立,那么这个集合就是凸锥,并且 K+KK (定理2.6)。

如果 C1,,Cm 是凸集,那么下面的线性组合也是凸集

C=λ1C1++λmCm

自然得,当 λ10,,λm0 并且 λ1++λm=1 时,上面的线性组合 C 叫做C1,,Cm的凸组合,从几何上讲,我们可以将 C 看成C1,,Cm的某个混合物,例如,令 C1,C2 分别是 R2 中的三角形和圆盘,当 λ 从0到1变化时

C=(1λ)C1+λC2

从三角形变到有圆角的三角形,圆的主导地位不断增加,最终变成一个圆盘。

为了几何上更加直观,有时可以将 C1+C2 看成所有平移 x1+C2 的并,其中 x1 C1 上变化。

对于集合的加法和标量乘法,哪些代数法则是有效的呢?简单老说,及时不是凸的,下面的法则都是成立的

C1+C2(C1+C2)+C3λ1(λ2C)λ(C1+C2)=C2+C1=C1+(C2+C3)=(λ1λ2)C=λC1+λC2

只包含0的凸集是加法操作的恒等元素,如果集合包含的元素超过一个,那么加法逆是不存在的;通常我们可以说当 C 时, 0[C+(C)]

下面介绍的定理是集代数中依赖凸的一个重要法则,这个分配律满足实际上等价于集合 C 是凸的,因为这个法则暗含着0λ1 λC+(1λ)C 含于 C

定理3.2 如果C是凸集并且 λ10,λ20 ,那么

(λ1+λ2)C=λ1C+λ2C

证明:无论 C 是否为凸集,包含都是成立的。从凸关系

C(λ1)/(λ1+λ2))C+(λ2/(λ1+λ2))C

中我们可以得出反向包含成立,这里假设 λ1+λ2>0 ,然后两边乘以 λ1+λ2 即可得出。如果 λ1 λ2 是0,定理明显成立。 ||

从这个定理我们可以得出当 C 是凸集时,C+C=2C,C+C+C=3C 等等。

给定 Rn 中的两个凸集 C1,C2 ,有唯一一个既含于 C1 又含于 C2 的最大凸集,即 C1C2 ,还有唯一一个即包含 C1 又包含 C2 的最小凸集,即 (C1C2) 。这个结论不知限于一对集合,对于任意的 {Ci,iI} 结论都是成立的,换句话说,在包含的自然偏序下 Rn 中所有凸集就是完备格(complete lattice)。

定理3.3 令 {Ci|iI} Rn 中任意凸集组成的集合,并且令 C 表示这个集合并的凸包,那么

C={ΣiIλiCi}

其中这个并包含所有有限的凸组合(即选择所有系数 λi 的非负值,使得只有有限个为非零并且相加为1)。

证明:根据定理2.3, C 是所有凸组合x=μ1y1++μmym的集合,其中向量 y1,,ym 属于集合 Ci 的并。实际上,我们通过取系数为非零并且来自不同集合 Ci 的向量的组合就能得到 C ,因为那些系数为零的向量可以从组合中忽略掉,而且如果两个正系数的向量属于同一个集合Ci,用 y1,y2 表示,那么 μ1y1+μ2y2 可以用 μy 代替,其中 μ=μ1+μ2

y=(μ1/μ)y1+(μ2/μ)y2Ci

因此 C 就是形如

μ1Ci1++μmCim

有限凸组合的并,其中 i1,,im 是不同的。除了符号不一样外,它和定理中描述的并是一样的。 ||

给定任意从 Rn Rm 的线性变换 A ,习惯上我们定义

ACA1D={Ax|xC}forCRn={x|AxD}forDRm

我们称 AC A C的像(image), A1D A D 的原像(inverse image),事实证明这个操作保留凸性。(注意线性变换的逆只有在单值映射时才存在,而这里的符号 A1D 跟它是不同的)

定理3.4 令 A 是从Rn Rm 的线性变换,那么对于 Rn 中的所有凸集 C AC Rm 中的凸集,对于 Rm 中的所有凸集 D A1D Rn 中的凸集。

推论3.4.1 凸集 C 在子空间L上的正交投影是一个凸集。

证明:映射到 L 上的正交投影是线性变换,它对每一个点x 分配唯一的一个 yL 使得 (xy)L ||

定理3.4中 A1D 为凸的一种解释是当 y 在一个凸集上变化时,联立线性方程组Ax=y的解 x 也会在一个凸集上变化,如果D=K+a,其中 K Rn中的非负象限, aRm ,那么 A1D 是向量 x 的集合,它使得Axa,即 Rn 中某个线性不等式组的解集。如果 C Rn中的非负象限,那么 AC 是向量 yRm 的集合,它使得等式 Ax=y 有一个解 x0

定理3.5 令 C,D 分别是 Rm,Rp 中的凸集,那么

CD={x=y,z|yC,zD}

Rm+p 的凸集。

定理3.5中的集合称为 C,D 的直和(direct sum)。对于平常的和 C+D ,其中 CRn,DRn ,如果每个向量 xC+D 可以唯一地表示成 x=y+z 的形式,其中 yC,zD ,那么我们也称它为直和。对于对称凸集 CC,DD ,当且仅当他们在 Rn 中的公共元素只有零向量时他们的和才是直和。(这就表明 Rn 可以表示成两个子空间的直和,一个包含 C ,另一个包含D)

定理3.6 令 C1,C2 Rm+p 的凸集, C 是向量x=(y,z)的集合(其中 yRm,zRp )使得存在向量 z1,z1 ,他们满足 (y,z1)C1,(y,z2)C2,z1+z2=z ,那么 C Rm+p中的凸集。

证明:令 (y,z)C ,其中 z1,z2 如定理中所示,同样设 (y,z),z1,z2 ,那么对于 0λ1 y′′=(1λ)y+λy,z′′=(1λ)z+λz ,我们有

(y′′,(1λ)z1+λz1)(y′′,(1λ)z2+λz2)z′′=(1λ)(z1=((1λ)z1=(1λ)(y,z1)+λ(y,z1)C1=(1λ)(y,z2)+λ(y,z2)C2+z2)+λ(z1+z2)+λz1+(1λ)z2+λz2)

因此向量

(1λ)(y,z)+λ(y,z)=(y′′,z′′)

属于 C ||

注意到定理3.6描述的是 Rm+p 中凸集的某个交换(commutative)和结合(associative)运算,有无限多种方法在 Rn 上引入线性坐标系,然后相对于每个坐标系将每个向量表示成 yRm,zRp ,每种方式可以得到定理3.6 描述的运算(如果 Rn 分解成子空间直和的方式不同,那么运算就不同),这种类型的运算称作部分加(partial addition),平常的加法(即形如 C1+C2 的运算)可以看成定理3.6 中 m=0 的极端情况,而交(即形如 C1C2 的运算)对应于 p=0 。 这两种极端情况之间有无限多种 Rn 中所有凸集类的部分和,每一个都是一种交换,结合二元运算。

刚刚提到的无限多种运算似乎非常随意,但是通过更特殊地考虑,我们可以列出四种运算做为自然运算。回忆一下,对于 Rn 中的每个凸集 C ,在Rn+1 中有一个凸锥 K 包含原点并且有一个横截面是C,即由 {(1,x)|xC} 生成的凸锥,这个对应关系是一对一的。这类锥 K 由这样的凸锥组成,这些凸锥和半空间{(λ,x)|λ0}只有唯一的公共点 (0,0) 。保留 Rn+1 中这类锥的运算对应于 Rn 中凸集的运算, Rn+1 变成 (λ,x) 的分解操作可以将我们的注意力集中到 Rn+1 上的四种部分和运算,也就是只在 x 上进行加法运算,只在λ上进行加法运算,以及两种极端情况,即在 λ,x 上同时进行加法运算,同时都不进行加法运算。这四种运算明显保留了问题中的那类凸锥 K

现在让我们看看对于凸集而言部分和的四种运算意味着什么。假设K1,K2分别对应于凸集 C1,C2 ,如果我们只对 K1,K2 上的 x 执行加法运算,当且仅当对于(1,x1)K1,(1,x2)K2,等式 x=x1+x2 恒成立时, (1,x) 产生的 K ,因此对应于K的凸集是 C=C1+C2 。如果我们对两部分都执行部分和运算,当且仅当 (λ1,x1)K1,(λ2,x2)K2 ,等式 x=x1+x2,1=λ1+λ2 恒成立时, (1,x) 属于 K ,因此C是集合 λ1C1+λ2C2 的并,其中 λ10,λ20,λ1+λ2=1 ,根据定理3.3我们知道,这实际就是conv (C1C2) λ,x 上都不进行加法运算和 K1,K2 去交集是一样的,明显对应于形式 C1C2 。剩下的那个运算就是只在 λ 上进行加法运算,当且仅当 (λ1,x)K1,(λ2,x)K2 时,其中 λ10,λ20,λ1+λ2=1 (1,x)K ,因此

C={λ1C1λ2C2|λi0,λ1+λ2=1}={(1λ)C1λC2|0λ1}

我们用 C1#C2 ,运算 # 叫做逆加法(inverse addition)。

定理3.7 如果 C1,C2 Rn 中的凸集,那么他们的逆和 C1#C2 也是凸集。

逆和是 Rn 中所有凸集的一个交换,结合二元运算,它类似于平常的加法(可以用逐点运算来表示),为了说明这个,我们首先注意到 C1#C2 由所有形如

x=λx1=(1λ)x2,0λ1,x1C1, x2C2

的向量 x 组成。这样的表达式需要x1,x2,x在同一条射线 {αe|α>0} 上,事实上,对于 α10,α20 ,我们有 x1=α1e,x2=α2e 并且

x=[α1α2/(α1+α2)]e=(α11+α12)1e

(如果 α1=0 或者 α2=0 ,那么最后那个系数可能理解为0),实际上这里的 x 只依赖与x1,x2,而不是 e 的选择。我们可能称它为x1,x2 的逆和,用 x1#x2 表示,向量的逆加法是交换和结合的扩展。

C1#C2={x1#x2|x1C1,x2C2}

C1+C2 是并行的。

我们讨论的所有运算明显保留了 Rn 中所有凸锥,当然除了平移运算外。因此当 K1,K2,K 是凸锥时,集合 K1+K2,K1#K2,conv(K1K2),K1K2,K1K2,AK,A1K,λK 是凸锥,正标量乘法对锥来说是很平凡的运算:对于 λ>0 ,我们有 λK=K ,由于这个原因,在这种情况下,加法和逆加法基本简化为格运算。

定理3.8 如果 K1,K2 是包含原点的凸锥,那么

K1+K2K1#K2=conv(K1K2)=K1K2

证明:根据定理3.3,conv (K1K2) (1λ)K1+λK2 的并,其中 λ[0,1] ,当 0<λ<1 时,后面那个集合变为 K1+K2 ,当 λ=0 时变为 K1 λ=1 时变为 K2 。因为 0K1,0K2,K1+K2 既包含 K1 又包含 K2 ,因此conv (K1K2) K1+K2 是一致的。同样地, K1#K2 (λK1)(1λ)K2 的交,其中 λ[0,1] ,当 0<λ<1 时,后面那个集合变成 K1K2 ,当 λ=0 λ=1 {0}K1K2 ,因此 K1#K2=K1K2 ||

这里我们提出另一个很有趣的结构。给定 Rn 中两个不同的点 x,y ,半线 {(1λ)x+λy|λ1} 可以看成光源在 x 处时y的阴影,而 y 在集合C上变化时得到半线的并就是 C 的阴影,这表明对于Rn中任意不相交的子集 C,S ,我们可以定义 C 相对于S的本影(umbra)为

xSλ1{(1λ)x+λC}

C 相对于S的半影(penumbra)为

xSλ1{(1λ)x+λC}

如果 C 是凸的,那么本影就是凸的,如果C,S都是凸的,那么半影是凸的。

附:

本影(umbra):发光体(非点光源)所发出光线被非透明物体阻挡后,在屏幕(或其他物体)上所投射出来完全黑暗的区域。此处发光体的光线完全被物体阻挡,而没有任何光线到达。

半影(penumbra):天体本影周围有部分光通过的影区。呈圆锥形,顶端指向太阳。其边界同月球(或地球)、太阳相内切。在半影区内只能见到部分太阳。当月球半影扫过地球时,便发生日偏食。在影像上,半影是通过观察影像来认识物体的主要障碍,半影又称为模糊阴影。

这里写图片描述

图1

这里写图片描述

图2 本影(A)和半影(B)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值