漫步凸分析二——凸集和锥

对于 Rn 中的子集 C ,当xC,yC,0<λ<1 时, (1λ)x+λyC ,那么我们说集合 C 是凸的。所以仿射集(包括 Rn 本身)是凸的,之所以凸集比仿射集更普遍是因为对于不同的点 x,y ,凸集只包含通过 x,y 直线的一部分,也就是

{(1λ)x+λy|0λ1}

这部分叫做 x,y 之间的(闭)线段,例如 R3 中的实心椭球和立方体是凸的但不是仿射的。

半平面是非常重要的凸集,对于任意非零 bRn,βR ,集合

{x|x,bβ},{x,bβ}

为闭半空间,集合

{x|x,b<β},{x,b>β}

为开半空间。这四个集合是非空的并且是凸的,注意如果 b,β λb,λβ 替换后得到的四个半空间跟之前是一样的,其中 λ0 ,由此可知这些半空间只取决于超平面 H={x|x,b=β} (定理1.3),所以给定一个超平面,我们可以明确的说出其对应的开和闭半空间。

定理2.1 任意个凸集的交集是凸的。

推论2.1.1 令 biRn,βiR ,其中 iI I 是任意一个索引集,那么集合

C={xRn|x,biβi,iI}

是凸的。

证明:令 Ci={x|x,biβi} ,那么 Ci 是一个闭半空间或者 Rn 或者 ,而 C=iICi ||

当然,如果推论中的不等式 换成 ,>,< 或者 = ,结论依然成立,因此给定一个含n个变量的联立线性不等式和等式组,解集 C 就是Rn中的凸集,这在理论和应用中都是一个重要的事实。

推论2.1.1将会被之后介绍的推论4.6.1推广。

可以表示成有限多个 Rn 闭半空间交集的集合称作多面体(polyhedral)凸集,这种集合比一般的凸集具有更好的性质,主要在于他们没有曲率。在19节将会介绍多面体凸集理论,另外,对于研究有限多个联立线性方程组和弱线性不等式组该理论依然适用。

对于向量和

λ1x1++λmxm

如果系数 λi 都是非负的并且 λ1++λm=1 ,那么该向量和称为 x1,,xm 的凸组合。在应用数学中,很多总情况都会出现凸组合, λ1,,λm 可以解释为概率或比例。例如 m 个质量为α1,,αm的粒子位于 R3 中的点 x1,,xm 处,那么整个系统的重心就是点 λ1x1++λmxm ,其中 λi=αi/(α1++αm) 。在这个凸组合中, λi xi 质量与整个质量的比例。

定理2.2 对于 Rn 的一个子集,当且仅当它包含其元素的所有凸组合时,这个子集是凸的。

证明:事实上,根据定义,对于集合 C ,当且仅当x1C,x2C,λ10,λ20,λ1+λ2=1 时, λ1x1+λ2x2C 恒成立,那么集合 C 是凸的。也就是说,C是凸的意味着在 m=2 时,集合 C 对凸组合运算是封闭的,因此我们必须说明这暗含着在m>2 C 对凸组合运算也是封闭的。现在任取m>2,利用归纳假设即 C 对于小于m个向量的所有凸组合封闭,我们给出 C 的一个凸组合x=λ1x1++λmxm,其中至少有一个系数 λi 不等于1(否则的话 λ1++λm=m1 );为了方便起见,令其为 λ1 ,令

y=λ2x2++λmxm,λi=λi/(1λ1)

那么对于 i=2,,m,λi0 ,并且

λ2++λm=(λ2++λm)/(λ2++λm)=1

那么 y C m1 个元素的凸组合,根据归纳假设 yC 。因为 x=(1λ1)y+λ1x1 ,所以 xC ||

包含所有 Rn 子集 S 的凸组合的交集称为S的凸包,用conv  S 表示,根据定理2.1可知它是凸集,是包含 S 的最小凸集。

定理2.3 对于所有的SRn,conv  S 包含 S 的所有凸组合。

证明:S的元素属于conv  S ,所以根据定理2.2,他们的所有凸组合属于conv  S 。另一方面,给定两个凸组合 x=λ1x1++λmxm y=μ1y1++μryr ,其中 xiS,yjS ,那么向量

(1λ)x+λy=(1λ)λ1x1++(1λ)λmxm+λ1μ1y1++λrμryr

S 的另一个凸组合,其中0λ1。由此可知, S 凸组合组成的集合其本身就是一个凸集,另外它包含S,所以它肯定和最小凸集(conv  S ) 是一致的。 ||

实际上,对于定理2.3,我们可以一次考虑 n+1 个或更少元素的凸组合,这个重要的改进将会在17节进行证明,也就是所谓的Caratheodory定理另一个关于定理2.3的改进会在定理3.3中给出。

推论2.3.1 Rn 中有限个子集 {b0,,bm} 的凸包由所有形如 λ0b0++λmbm 的向量组合,其中 λ00,,λm0,λ0++λm=1

证明:所有从 {b0,,bm} 中选出元素产生的凸组合可以表示成 b0,,bm 的凸组合,对于那些没有用到的向量 bi ,可以将其系数置为0。 ||

如果集合是有限多个点的凸包,那么我们称该集合为多面体。如果 {b0,b1,,bm} 是仿射无关的,那么它的凸包叫做 m 维单纯形,并且b0,,bm叫做单纯形的顶点。在aff {b0,b1,,bm} 上用重心坐标表示的话,单纯形的每个点都可以唯一地表示成顶点的凸组合, λ0==λm=1/(1+m) 的点 λ0b0++λmbm 叫做单纯形的中点或者重心,当 m=0,1,2,3 时,单纯形分别是点,(闭)线段,三角形或四面体。

一般情况下,凸集 C 的维数就是C仿射包的维数,因此对于一个凸圆盘而言,无论它被嵌入到几维的空间,它的维数都是二。(仿射集或单纯形的维数与他们作为凸集时的维数一样)下面的事实将会用于第6节的证明,也就是非空凸集具有非空的相对内点。

定理2.4 凸集 C 的维数是所有含与C中单纯形的最大值维数。

证明: C 任意子集的凸包都含在C中,所有含于 C 单纯形的最大维数是m,使得 C 包含一个含有m+1个元素的仿射无关集。令 {b0,b1,,bm} 是有 m 个极大值的集合,并且零M是仿射包,那么 dimM=m,MaffC ,更进一步 CM ,因为如果 CM 包含元素 b ,那么C m+2 个元素 b0,,bm,b 集合僵尸仿射无关的,这与最大值 m 矛盾。(即,aff{b0,,bm,b}将包含 M ,因此将超过m 维)因为aff  C 是包含 C 的最小仿射集,所以aff C=M,由此得出 dimC=m ||

对于 Rn 的子集 K ,如果它对于正标量乘法封闭,即当xK,λ>0 λxK ,那么该集合叫做锥。这样的集合是从原点发出射线的并,该集合可能包含原点,也可能不包含。当锥还是一个凸集的时候我们成它为凸锥,(注意,许多作者在 K 含有原点的时候才成为凸锥,因此,对于这些作者而言,凸锥就是对非负标量乘法封闭的非空凸集。)

我们不该认为凸锥就是尖的,尤其是Rn的子空间就是凸锥,对于通过原点的超平面,它多对应的开和闭半空间也是凸锥。

两个最重要的凸锥就是 Rn 的非负象限

{x=ξ1,,ξn|ξ10,,ξn0}

和正象限

{x=ξ1,,ξn|ξ1>0,,ξn>0}

这些锥在不等式理论中都是很有用的,习惯上如果 xx 属于非负象限,我们就写作 xx ,即

ξjξj,j=1,,n.

利用这个符号,非负象限由向量 x 组成,其中x0

定理2.5 任意个凸锥的交集是凸锥。

推论2.5.1 对于 iI ,令 biRn ,其中 I 是一个任意的索引集,那么

K={xRn|x,bi0,iI}

是一个凸锥。

证明:如同推论2.1.1。 ||

当然,推论2.5.1中的 可能用 ,>,< 或者 = 替换,因此如果线性不等式是齐次的话,它的解集是一个凸锥,而不仅仅是凸集。

下面介绍的凸锥特征强调的是凸锥和子空间的相似性。

定理2.6 对于Rn的一个子集,当且仅当它对加法和正标量乘法封闭时,这个子集是凸锥。

证明:令 K 是一个锥,xK,yK,如果 K 是凸的,那么向量z=(1/2)(x+y)属于 K ,因此x+y=2zK。另一方面,如果 K 对加法封闭,并且0<λ<1,那么向量 (1λ)x,λy 属于 K ,于是(1λ)x+λyK,因此当且仅当它对加法封闭时 K 是凸的。||

推论2.6.1 对于 Rn 的一个子集,当且仅当它包含其元素的所有正线性组合时(即线性组合 λ1x1++λmxm ,其中系数都是正的),该集合是凸锥。

推论2.6.2 令 S Rn的任意子集,并且令 K S中所有正线性组合的集合,那么 K 是包含S的最小凸锥。

证明:很明显 K 对加法和正标量乘法封闭,并且KS,另一方面,每个包含 S 的凸集肯定包含K ||

S 是凸集时,更简单的描述如下

推论2.6.3 令C是凸集,并且

K={λx|λ>0,xC}

那么 K 是包含C的最小凸锥。

证明:这个结论可以根据前面的推论得出。即, C 中元素的所有正线性组合是C中元素的凸组合乘以正标量值,也就是 K 中的元素。||

推论2.6.2(或者推论2.6.3)中,通过将原点伴随到锥中而得到的凸锥就是所谓由 S 生成的凸锥,用cone S表示。(因此在我们的定义中,由 S 生成的凸锥和包含S的最小凸锥是不一样的,除非后者正好包含原点。)如果 S ,cone  S S 的所有非负(不是正)线性组合组成,显然

cone=conv(ray S)

其中ray  S 是原点和非零向量 yS 产生的不同射线(形如 {λy|λ0} 的射线)的并。

就像椭圆盘可以看成实心圆锥的某个横截面一样, Rn 中的每个凸集 C 可以看成Rn+1中某个凸锥 K 的横截面。事实上,令K表示 Rn+1 中集合 (1,x) 生成的凸锥,其中 xC ,那么 K 是由Rn+1的原点和 (λ,λx) 组成的,其中 λ>0,xC K 和超平面{(λ,y|λ=1)}的交可以视为 C ,依据这个事实,我们可以从对应的(通常更加简单)凸锥定理中推断出凸集定理。

对于凸集C在点 a 处的向量x,如果 x C 中以a 为端点的所有直线夹角不是锐角,即对每个 xC,xa,x0 ,那么就称 x 是法向量。例如,如果 C 是半空间{x|x,bβ}并且 a 满足a,b=β,那么 b C a 处的法向量。一般来说,C a 处的所有法向量x组成的集称为 C a处的法锥(normal cone),很容易证实这个锥一直是凸的。

另一个容易证实的凸锥实例是凸集 C 的屏障锥(barrier cone),也就是对于每个xC,存在 βR ,使得 x,xβ 的所有向量 x 的集合。

每个包含0的凸锥都和一对子空间相关联,具体如下所示。

定理2.7 令 K 是包含0的凸锥,那么存在一个最小的包含K的子空间,即

KK={xy|xK,yK}=aff K

并且有一个最大的含于 K 的子空间,即(K)K

证明:根据定理2.6, K 对加法和正标量乘法封闭。为了成为子集,进一步,集合还包含0并且对-1的乘法封闭,显然KK 是满足条件的最小集合(包含 K ),(K)K是满足条件的最大集合(含于 K )。前者肯定和aff K一致,因为包含0的集合的仿射包是一个子空间(根据定理1.1)。 ||

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值