凸优化学习笔记03(凸集、锥、超平面和半空间、Euclid球和椭球)

凸集

定义:集合C中任意两点间的线段仍在C中,那么该集合即为凸集。

数学表达\forall x_1,x_2 \in C, 0 \leq \theta \leq 1, 有 \theta x_1 +(1-\theta)x_2 \in C.

通俗理解:凸集C里任意找两点,其连线必定还在凸集C内部。

凸组合

定义:与仿射组合类似【仿射组合定义可回顾凸优化读书笔记01_Bryant_cqc的博客-CSDN博客

凸集与凸组合的关系

凸集包含其中所有点的凸组合。

凸包

定义:与仿射包类似【仿射包定义可回顾凸优化读书笔记01_Bryant_cqc的博客-CSDN博客

定义:如果对于任意 x \in C 和 \theta \geq 0,都有 \theta x \in C,我们称集合C是锥或者非负齐次。

扩展:若集合C是锥,并且满足凸集条件,则集合C称为凸锥。

锥组合

定义:具有 \theta_1x_1+...+\theta_kx_k, \theta_1,...,\theta_k \geq 0 形式的点称为 x_1,...,x_k 的锥组合(或非负线性组合)。

延伸:集合C是凸锥的充要条件是它包含其元素的所有锥组合。

锥包

定义:与仿射包类似,只是约束条件变成了 \theta_i \geq 0,i=1,...,k。包含集合C的最小的凸锥。

常见凸集

a. 空集\varnothing、任意一个点 \begin{Bmatrix} x_0 \end{Bmatrix}、全空间R^n都是R^n的仿射(自然也是凸的)子集。

b. 任意直线是仿射的。如果直线通过零点,即为子空间,因此,也是凸锥。【解释:因为当\theta \geq 0时,只有子空间在x > 0时,\theta x \geq 0x < 0时,\theta x \leq 0,其他直线不符合该要求】

c. 一条线段是凸的,但不是仿射的(除非退化为一个点)。

d. 一条射线,既具有形式 \begin{Bmatrix} x_0+\theta v | \theta \geq 0 \end{Bmatrix}v \neq 0的集合,是凸的,但不是仿射的。如果射线的基点 x_0 是0,则它是凸锥。

e. 任意子空间是仿射的、凸锥。

超平面与半空间

超平面

定义:关于x的非平凡线性方程的解空间(是一个仿射集合)。

表示:集合 \begin{Bmatrix} x|a^Tx = b \end{Bmatrix},其中 a \in R^n,a \neq 0, b \in R

几何解释:与给定向量a的内积为常数的点的集合,也可以看成法线方向为a的超平面,而常数b \in R决定了这个平面从原点的偏移。

根据这个几何解释,可将超平面表示成下面两种形式:

\begin{Bmatrix} x|a^T(x-x_0)=0 \end{Bmatrix}=x_0+a^\perp,

其中 x_0 是超平面上的任意一点(即任意满足 a^T x_0= b 的点), a^\perp 表示 a 的正交补,即与a 正交的向量集合:

a^\perp = \begin{Bmatrix} v|a^T v=0 \end{Bmatrix},

直观表示:

 

半空间

来源:一个超平面将 R^n 划分为两个半空间。

数学表示:\begin{Bmatrix} x|a^Tx \leq b \end{Bmatrix} 或 \begin{Bmatrix} x|a^Tx > b \end{Bmatrix}  (a \neq 0)

特点:半空间是凸的,但不是仿射的。

边界:\begin{Bmatrix} x|a^Tx = b \end{Bmatrix}开半空间:\begin{Bmatrix} x|a^Tx < b \end{Bmatrix}

 直观表示:

Euclid 球和椭球

Euclid球

数学形式B(x_c,r)=\begin{Bmatrix} x| \left \| x-x_c \right \|_2 \leq r \end{Bmatrix}=\begin{Bmatrix} x|(x-x_c)^T(x-x_c) \leq r^2 \end{Bmatrix}

其中 r > 0\left \| \cdot \right \|_2 表示欧几里得范数,向量x_c 是球心,标量 r为半径。

特点:Euclid球是凸集。

椭球

数学形式\varepsilon = \begin{Bmatrix} x|(x-x_c)^T P^{-1} (x-x_c) \leq 1 \end{Bmatrix}

其中P = P^T \succ 0,即P对称正定矩阵。向量x_c \in R^n 为椭球中心。矩阵P决定了椭球从 x_c 向各个方向扩展的幅度。\varepsilon 的半轴长度由\sqrt \lambda_i 给出,这里 \lambda_i 为P的特征值。

例子:球可看做 P = r^2I 的椭球。

特点:椭球是凸集。

术语解释

对称正定矩阵:举个例子,A为n阶方阵,若A还满足对称矩阵(即A =A^T),对任意的非零向量X \in R^n,都有 X^TAX > 0 ,则称A为对称正定矩阵[1]。

参考文献

[1] 正定矩阵_百度百科

[美]S. Boyd, L. Vandenberghe. 凸优化[M]. 王书宁, 许鋆, 黄晓霖. 北京: 清华大学出版社, 2013.

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值