机器学习——Dropout原理介绍

原创 2015年07月09日 09:47:34

一:引言

  因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。在训练bp网络时经常遇到的一个问题,过拟合指的是模型在训练数据上损失函数比较小,预测准确率较高(如果通过画图来表示的话,就是拟合曲线比较尖,不平滑,泛化能力不好),但是在测试数据上损失函数比较大,预测准确率较低。

  常用的防治过拟合的方法是在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。因此在添加权值惩罚项后,应用梯度下降算法迭代优化计算时,如果参数theta比较大,则此时的正则项数值也比较大,那么在下一次更新参数时,参数削减的也比较大。可以使拟合结果看起来更平滑,不至于过拟合。

  Dropout是hintion最近2年提出的;为了防止模型过拟合,Dropout可以作为一种trikc供选择。在hinton的论文摘要中指出,在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。

二 Dropout方法

训练阶段:

  1.Dropout是在标准的bp网络的的结构上,使bp网的隐层激活值,以一定的比例v变为0,即按照一定比例v,随机地让一部分隐层节点失效;在后面benchmark实验测试时,部分实验让隐层节点失效的基础上,使输入数据也以一定比例(试验用20%)是部分输入数据失效(这个有点像denoising autoencoder),这样得到了更好的结果。

  2.去掉权值惩罚项,取而代之的事,限制权值的范围,给每个权值设置一个上限范围;如果在训练跟新的过程中,权值超过了这个上限,则把权值设置为这个上限的值(这个上限值得设定作者并没有说设置多少最好,后面的试验中作者说这个上限设置为15时,最好;为啥?估计是交叉验证得出的实验结论)。

  这样处理,不论权值更新量有多大,权值都不会过大。此外,还可以使算法使用一个比较大的学习率,来加快学习速度,从而使算法在一个更广阔的权值空间中搜索更好的权值,而不用担心权值过大。

测试阶段:

  在网络前向传播到输出层前时隐含层节点的输出值都要缩减到(1-v)倍;例如正常的隐层输出为a,此时需要缩减为a(1-v)。

  这里我的解释是:假设比例v=0.5,即在训练阶段,以0.5的比例忽略隐层节点;那么假设隐层有80个节点,每个节点输出值为1,那么此时只有40个节点正常工作;也就是说总的输出为40个1和40个0;输出总和为40;而在测试阶段,由于我们的权值已经训练完成,此时就不在按照0.5的比例忽略隐层输出,假设此时每个隐层的输出还是1,那么此时总的输出为80个1,明显比dropout训练时输出大一倍(由于dropout比例为0.5);所以为了得到和训练时一样的输出结果,就缩减隐层输出为a(1-v);即此时输出80个0.5,总和也为40.这样就使得测试阶段和训练阶段的输出“一致”了。(个人见解)

三 Dropout原理分析

  Dropout可以看做是一种模型平均,所谓模型平均,顾名思义,就是把来自不同模型的估计或者预测通过一定的权重平均起来,在一些文献中也称为模型组合,它一般包括组合估计和组合预测。

  Dropout中哪里体现了“不同模型”;这个奥秘就是我们随机选择忽略隐层节点,在每个批次的训练过程中,由于每次随机忽略的隐层节点都不同,这样就使每次训练的网络都是不一样的,每次训练都可以单做一个“新”的模型;此外,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。

  这样dropout过程就是一个非常有效的神经网络模型平均方法,通过训练大量的不同的网络,来平均预测概率。不同的模型在不同的训练集上训练(每个批次的训练数据都是随机选择),最后在每个模型用相同的权重来“融合”,介个有点类似boosting算法。

四 代码详解

  首先先介绍一个基于matlab deeplearning toolbox版本的dropout代码,主要参考(tornadomeet大牛博客),如果了解DenoisingAutoencoder的训练过程,则这个dropout的训练过程如出一辙;不需要怎么修改,就可以直接运行,因为在toolbox中已经修改完成了。

  这个过程比较简单,而且也没有使用L2规则项,来限制权值的范围;主要是用于理解dropout网络,在训练样本比较少的情况下,dropout可以很好的防止网络过拟合。

训练步骤:

1.提取数据(只提取2000个训练样本)

2 初始化网络结构:这里主要利用nnsetup函数构建一个[784 100 10]的网络。由于是练习用途,所以不进行pre_training。

3 采用minibatch方法,设置dropout比例nn.dropoutFraction=0.5;利用nntrain函数训练网络。

  按比例随机忽略隐层节点:

if(nn.dropoutFraction > 0)

           if(nn.testing)%测试阶段实现mean network,详见上篇博文

                nn.a{i} = nn.a{i}.*(1 - nn.dropoutFraction);

           else%训练阶段使用
                nn.dropOutMask{i} =(rand(size(nn.a{i}))>nn.dropoutFraction);

                nn.a{i} =nn.a{i}.*nn.dropOutMask{i};
           end
end
>> a=rand(1,6)

>> temp=(rand(size(a))>0.5)

>> dropout_a=a.*temp

误差delta反向传播实现:

% delta(i)=delta(i+1)W(i)*a(i)(1-a(i)) ;之后再进行dropout

if(nn.dropoutFraction>0)

   d{i} = d{i} .* [ones(size(d{i},1),1) nn.dropOutMask{i}];

end

权值更新值delta_w实现:

%  delta_w(i)=delta(i+1)*a(i) 
for i = 1 : (n - 1)
    if i+1==n
       nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1);
    else
   nn.dW{i} = (d{i + 1}(:,2:end)' * nn.a{i}) / size(d{i + 1}, 1);
    end
end

测试样本错误率:15.500% without dropout

测试样本错误率:12.100% with dropout

参考文献:

http://www.cnblogs.com/tornadomeet/p/3258122.html

版权声明:本文为博主原创文章,未经博主允许不得转载。转载请标注原地址http://blog.csdn.net/u010402786 举报

相关文章推荐

理解dropout

开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不...

机器学习——Dropout原理介绍

机器学习——Dropout原理介绍 一:引言   因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。在训练bp网络时经常...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

TensorFlow学习---tf.nn.dropout防止过拟合

一、 Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层。 Dropout就是在不同的训练过程中随机扔掉一部分神经元...

tensorflow中dropout的用法,防止overfitting

1、不使用dropout的方案: from __future__ import print_function import tensorflow as tf from sklearn.dataset...

面朝大海——我的2016

终于,当我坐下回味的时候,我也有了我要怀念的事物,想象中的过去,总是那么的美好。快乐是美好的,激动是美好的,甚至痛苦是美好的,消沉也是美好的。2016,教给我的,就是面朝大海,吞吐一切。别人自有别人的...

tensorflow学习笔记(十):sess.run()

session.run()session.run([fetch1, fetch2])import tensorflow as tf state = tf.Variable(0.0,dtype=tf.f...

深度学习(十四):详解Matconvnet使用imagenet模型训练自己的数据集

上节讨论过如何使一个简单的cnn网络训练mnist数据集,该节介绍复杂并且使用广泛的使用imagenet网络的预训练模型训练自己的数据集。Ok首先是自己的数据集了。Matconvnet中训练image...
  • on2way
  • on2way
  • 2016-10-28 19:50
  • 11642

深度学习(十二):Matconvnet小试牛刀与提特征

该节简单介绍一下如何使用Matconvnet的现有的模型进行图像分类实验以及提取图像对应层的特征。先来看看如何用训练好的imagenet网络模型进行图像的预测,英文版的官网教程就在这里:http://...
  • on2way
  • on2way
  • 2016-10-28 19:20
  • 13718

深度学习(十五):Matconvnet小试fast-rcnn目标检测

该节来试验一下Matconvnet集成的fast-rcnn目标检测模型。去Matconvnet的官网可以发现,当前最新一版的Matconvnet-1.0-beta23 集成了fast-rcnn模型,注...
  • on2way
  • on2way
  • 2016-11-01 13:06
  • 4165

对 CNN 中 dropout layer 的理解

dropout layer的目的是为了防止CNN 过拟合。那么为什么可以有效的防止过拟合呢? 首先,想象我们现在只训练一个特定的网络,当迭代次数增多的时候,可能出现网络对训练集拟合的很好(在训练集上l...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)