OpenAI-Gym
文章平均质量分 69
YongqiangGao
这个作者很懒,什么都没留下…
展开
-
OpenAI Gym学习
OpenAI Gym介绍最近在学习强化学习,在师兄的推荐下,自学了一款用于研发和比较强化学习算法的工具包——OpenAI Gym,它支持训练智能体(agent)做任何事——从行走到玩Pong或围棋之类的游戏都在范围中。OpenAI Gym 是一个用于开发和比较RL 算法的工具包,与其他的数值计算库兼容,如tensorflow 或者theano 库。现在主要支持的是python 语言,以后将支持其他语原创 2017-05-09 13:21:25 · 13435 阅读 · 0 评论 -
OpenAI Gym学习
观察(Observations)上篇博客介绍了使用OpenAI Gym的CartPole(倒立摆)的demo,如果想要在每个步骤中做出比采取随机行动更好的行动,那么实际了解行动对环境的影响可能会很好。 环境的step 函数返回需要的信息,step 函数返回四个值observation、reward、done、info,下面是具体信息:observation (object):一个与环境相关的对象原创 2017-05-10 23:41:17 · 10762 阅读 · 1 评论 -
OpenAI Gym学习
记录和上传结果前面三篇博文介绍了OpenAI Gym安装、使用以及基本环境。接下来介绍如何在OpenAI Gym平台测试自己的强化学习的算法,可以轻松地记录自己算法在环境中的表现,以及拍摄自己算法学习的视频,只需使用Monitor Wrapper包装自己的环境,如下所示:import gymfrom gym import wrappersenv = gym.make('CartPole-v0')原创 2017-05-11 00:24:46 · 12354 阅读 · 0 评论 -
OpenAI Gym学习
上篇博客介绍了OpenAI Gym、OpenAI Gym与强化学习以及OpenAI Gym的安装,接下来运行一个demo体验一下OpenAI Gym这个平台,以CartPole(倒立摆)为例,在工作目录下建立一个python模块,代码如下:import gymenv = gym.make('CartPole-v0')env.reset()for _ in range(1000): en原创 2017-05-09 16:49:59 · 14391 阅读 · 2 评论