Pytorch入门——概述

本文介绍了Pytorch的由来,特点和优势,包括其在GPU加速的深度神经网络编程中的应用,动态计算图的优势,以及常用工具包如torch、torch.nn和torch.optim等。Pytorch因其动态计算图和丰富的Python生态系统,特别适合处理如RNN等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本来一直用tensorflow做深度学习,最近在莫烦python中看到了Pytorch的教程,同时在知乎上看到了讨论Pytorch的帖子,就跟着教程结合Pytorch官方提供的教程学习Pytorch。

1.Pytorch简介

Pytorch是Facebook 的 AI 研究团队发布了一个 Python 工具包,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用。但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。作为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了舒适的写代码选择。

2.Pytorch特点及优势

2.1 Pytorch特点

  • PyTorch 提供了运行在 GPU/CPU 之上、基础的张量操作库;
  • 可以内置的神经网络库;
  • 提供模型训练功能;
  • 支持共享内存的多进程并发(multiprocessing )库等;

2.2 Pytorch特点</

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值