OpenAI Gym学习

上篇博客介绍了OpenAI Gym、OpenAI Gym与强化学习以及OpenAI Gym的安装,接下来运行一个demo体验一下OpenAI Gym这个平台,以CartPole(倒立摆)为例,在工作目录下建立一个python模块,代码如下:

import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
    env.render()
    env.step(env.action_space.sample()) # take a random action

其中env.reset()重置环境的状态,、env.render()重绘环境的一帧
这里写图片描述
由动画结果可以看出随机控制算法发散,系统很快失去稳定。如果想查看其他一些环境,请尝试用MountainCar-v0,MsPacman-v0(需要Atari依赖关系)或Hopper-v1(需要MuJoCo依赖项)替换上述CartPole-v0,这些环境都来自Env基类。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值