干货| 针对实际数据做机器学习的相关处理

原创 2016年08月30日 09:21:29

1.首先是数据样本问题

       实际上在教学中,构建分类器时,样本类都是平衡的——也就是说,每个类中的样本数量是大致相同的。数据库通常是净化过的,这样老师才能够把注意力集中在教授特定算法或技巧上,而不被其它问题干扰。

      但是在实际真是生活中,数据样本参差不齐,不会平衡,存在大量的误差甚至错误点,导致不平衡。

       解决可以使用过采样和欠采样,待续。。。。。。

版权声明:本文为博主原创文章,未经博主允许不得转载。

[完]机器学习实战 第十三章 利用PCA来简化数据

本章内容 降维技术 主成分分析(PCA,Principal Component Analysis) 对半导体数据进行降维处理 体育比赛中,人们面对的原本是百万像素的数据,但只有球的三维位置才是最重要的...
  • namelessml
  • namelessml
  • 2016年10月26日 19:33
  • 920

机器学习面试干货精讲

本文来自作者 de,light 在 GitChat 上分享 「机器学习面试干货精讲」,「阅读原文」查看交流实录。「文末高能」编辑 | 哈比序言本文尽可能的不涉及到繁杂的数学公式,把面试中常问的模型核心...
  • GitChat
  • GitChat
  • 2018年01月04日 00:00
  • 199

机器学习基础(三十六)—— 非规整数据(值缺失、异常值)的处理

(1)非规整 (2)值缺失 (3)异常值(outlier) 一般来说,现实中的数据会存在信息不完整、数据点缺失和异常值的情况,理想情况下,我们会去尝试修复非规整数据,但很多数据集都源于一些难以重现(不...
  • lanchunhui
  • lanchunhui
  • 2016年03月31日 21:53
  • 1849

机器学习-常见的数据预处理

背景常见的数据预处理方法
  • yehui_qy
  • yehui_qy
  • 2016年12月21日 20:36
  • 3490

机器学习中为什么需要对数据进行归一化?

机器学习模型被互联网行业广泛应用,如排序(参见:排序学习实践)、推荐、反作弊、定位(参见:基于朴素贝叶斯的定位算法)等。一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征...
  • Code_lr
  • Code_lr
  • 2016年05月17日 19:24
  • 5017

机器学习预处理之数据值缺失

一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间...
  • chienchia
  • chienchia
  • 2014年11月05日 09:22
  • 2963

机器学习之自然语言处理理解

大数据的机会使得更容易去做自然语言处理,人工智能闭环:数据驱动机器学习,有一个系统用户产生大量数据,基于数据建立模型服务客户。自然语言处理核心想法基于机器学习,统计机器学习方法分类为:分类、匹配、翻译...
  • wyisfish
  • wyisfish
  • 2017年05月06日 00:36
  • 1066

机器学习中常用的数据集处理方法

1.离散值的处理: 因为离散值的差值是没有实际意义的。比如如果用0,1,2代表红黄蓝,1-0的差值代表黄-红,是没有意义的。因此,我们往往会把拥有d个取值的离散值变为d个取值为0,1的离散值或者将其...
  • qq_35571432
  • qq_35571432
  • 2017年11月21日 18:49
  • 91

机器学习实战-数据探索(缺失值处理)

2017.09.10 09:06* 字数 1753 阅读 315评论 1喜欢 4 接着上一篇:《机器学习实战-数据探索》介绍,机器学习更多内容可以关注github项目:machine...
  • javastart
  • javastart
  • 2017年09月11日 19:53
  • 490

Deep Learning(深度学习)之(七)高维数据的机器学习

高维数据的机器学习      Anima Anandkumar 是加州大学埃尔文分校电子工程与计算机科学系的教职人员。她的研究主要集中于『概率隐变量模型』以及『张量算法』的分析和设计,及其在...
  • boon_228
  • boon_228
  • 2016年06月20日 13:42
  • 7712
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:干货| 针对实际数据做机器学习的相关处理
举报原因:
原因补充:

(最多只允许输入30个字)