干货| 针对实际数据做机器学习的相关处理

1.首先是数据样本问题

       实际上在教学中,构建分类器时,样本类都是平衡的——也就是说,每个类中的样本数量是大致相同的。数据库通常是净化过的,这样老师才能够把注意力集中在教授特定算法或技巧上,而不被其它问题干扰。

      但是在实际真是生活中,数据样本参差不齐,不会平衡,存在大量的误差甚至错误点,导致不平衡。

       解决可以使用过采样和欠采样,待续。。。。。。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011001084/article/details/52366379
文章标签: 机器学习 数据
个人分类: 神经网络
上一篇"数据可视化”看这篇文章就够了
下一篇Spring使用Cache(ehcache)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭