在设计深度学习网络的时候,需要计算输入尺寸和输出尺寸,那么就要设计卷积层的的各种参数。这里有一些设计时候的计算公式,方便得到各层的参数。
这里简化下,约定:
没有填充,单位步长
零填充,单位步长
-
半填充
-
全填充
参考图如下图所示;
不填充,非单位步长
零填充,非单位步长
示意图如下:
参考:
[1603.07285] A guide to convolution arithmetic for deep learning
本文提供了一系列关于深度学习中卷积层参数计算的公式,包括不同填充方式和步长设置下的输入输出尺寸计算方法。适合希望理解并设计卷积神经网络结构的读者。
在设计深度学习网络的时候,需要计算输入尺寸和输出尺寸,那么就要设计卷积层的的各种参数。这里有一些设计时候的计算公式,方便得到各层的参数。
这里简化下,约定:
没有填充,单位步长
零填充,单位步长
参考图如下图所示;
不填充,非单位步长
零填充,非单位步长
示意图如下:
参考:
[1603.07285] A guide to convolution arithmetic for deep learning
374
1814

被折叠的 条评论
为什么被折叠?