DeepLearning tutorial(6)易用的深度学习框架Keras简介

原创 2015年04月30日 17:03:10

致读者:本文写于keras开发初期,目前keras已经迭代到1.0版本,很多API都发生了较大的变化,所以本文的粘贴的一些代码可能已经过时,在我的github上有更新后的代码,读者需要的话可以看github上的代码:https://github.com/wepe/MachineLearning

之前我一直在使用Theano,前面五篇Deeplearning相关的文章也是学习Theano的一些笔记,当时已经觉得Theano用起来略显麻烦,有时想实现一个新的结构,就要花很多时间去编程,所以想过将代码模块化,方便重复使用,但因为实在太忙没有时间去做。最近发现了一个叫做Keras的框架,跟我的想法不谋而合,用起来特别简单,适合快速开发。

1. Keras简介

Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。使用文档在这:http://keras.io/,这个框架貌似是刚刚火起来的,使用上的问题可以到github提issue:https://github.com/fchollet/keras 

下面简单介绍一下怎么使用Keras,以Mnist数据库为例,编写一个CNN网络结构,你将会发现特别简单。

2. Keras里的模块介绍

  • Optimizers

    顾名思义,Optimizers包含了一些优化的方法,比如最基本的随机梯度下降SGD,另外还有Adagrad、Adadelta、RMSprop、Adam,一些新的方法以后也会被不断添加进来。

    keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.9, nesterov=False)

    上面的代码是SGD的使用方法,lr表示学习速率,momentum表示动量项,decay是学习速率的衰减系数(每个epoch衰减一次),Nesterov的值是False或者True,表示使不使用Nesterov momentum。其他的请参考文档。

  • Objectives

    这是目标函数模块,keras提供了mean_squared_error,mean_absolute_error
    ,squared_hinge,hinge,binary_crossentropy,categorical_crossentropy这几种目标函数。

    这里binary_crossentropy 和 categorical_crossentropy也就是常说的logloss.

  • Activations

    这是激活函数模块,keras提供了linear、sigmoid、hard_sigmoid、tanh、softplus、relu、softplus,另外softmax也放在Activations模块里(我觉得放在layers模块里更合理些)。此外,像LeakyReLU和PReLU这种比较新的激活函数,keras在keras.layers.advanced_activations模块里提供。

  • Initializations

    这是参数初始化模块,在添加layer的时候调用init进行初始化。keras提供了uniform、lecun_uniform、normal、orthogonal、zero、glorot_normal、he_normal这几种。

  • layers

    layers模块包含了core、convolutional、recurrent、advanced_activations、normalization、embeddings这几种layer。

    其中core里面包含了flatten(CNN的全连接层之前需要把二维特征图flatten成为一维的)、reshape(CNN输入时将一维的向量弄成二维的)、dense(就是隐藏层,dense是稠密的意思),还有其他的就不介绍了。convolutional层基本就是Theano的Convolution2D的封装。

  • Preprocessing

    这是预处理模块,包括序列数据的处理,文本数据的处理,图像数据的处理。重点看一下图像数据的处理,keras提供了ImageDataGenerator函数,实现data augmentation,数据集扩增,对图像做一些弹性变换,比如水平翻转,垂直翻转,旋转等。

  • Models

    这是最主要的模块,模型。上面定义了各种基本组件,model是将它们组合起来,下面通过一个实例来说明。

3.一个实例:用CNN分类Mnist

  • 数据下载

    Mnist数据在其官网上有提供,但是不是图像格式的,因为我们通常都是直接处理图像,为了以后程序能复用,我把它弄成图像格式的,这里可以下载:http://pan.baidu.com/s/1qCdS6,共有42000张图片。

  • 读取图片数据

    keras要求输入的数据格式是numpy.array类型(numpy是一个python的数值计算的库),所以需要写一个脚本来读入mnist图像,保存为一个四维的data,还有一个一维的label,代码:

#coding:utf-8
"""
Author:wepon
Source:https://github.com/wepe
file:data.py
"""

import os
from PIL import Image
import numpy as np

#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,
#如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:] = arr改为data[i,:,:,:] = [arr[:,:,0],arr[:,:,1],arr[:,:,2]]
def load_data():
    data = np.empty((42000,1,28,28),dtype="float32")
    label = np.empty((42000,),dtype="uint8")

    imgs = os.listdir("./mnist")
    num = len(imgs)
    for i in range(num):
        img = Image.open("./mnist/"+imgs[i])
        arr = np.asarray(img,dtype="float32")
        data[i,:,:,:] = arr
        label[i] = int(imgs[i].split('.')[0])
    return data,label
  • 构建CNN,训练

    短短二十多行代码,构建一个三个卷积层的CNN,直接读下面的代码吧,有注释,很容易读懂:

#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data

#加载数据
data, label = load_data()
print(data.shape[0], ' samples')

#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)

###############
#开始建立CNN模型
###############

#生成一个model
model = Sequential()

#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 1, 5, 5, border_mode='valid')) 
model.add(Activation('tanh'))

#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,4, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))

#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 8, 3, 3, border_mode='valid')) 
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))

#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(16*4*4, 128, init='normal'))
model.add(Activation('tanh'))

#Softmax分类,输出是10类别
model.add(Dense(128, 10, init='normal'))
model.add(Activation('softmax'))

#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(l2=0.0,lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")

#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
  • 代码使用与结果

代码放在我github的机器学习仓库里:https://github.com/wepe/MachineLearning,非github用户直接点右下的DownloadZip。

在/DeepLearning Tutorials/keras_usage目录下包括data.py,cnn.py两份代码,下载Mnist数据后解压到该目录下,运行cnn.py这份文件即可。

结果如下所示,在Epoch 9达到了0.98的训练集识别率和0.97的验证集识别率:

这里写图片描述


转载请注明出处:http://blog.csdn.net/u012162613/article/details/45397033

版权声明:本文为博主原创文章,未经博主允许不得转载。

利用keras搭建神经卷积网络(CNN)

CNN因为之前上课的时候对CNN学的不是很好,所以在这次训练之前我在知乎上找到一篇对CNN讲解的文章,先进行阅读了一番。来自机器之心的一篇文章 http://mp.weixin.qq.com/s?...

keras —— 常用模型构建

序列模型Sequential是层的线性堆叠 可以通过将一个层列表传递到构建器的方式创建Sequential from keras.models import Sequential from kera...

Keras学习笔记03——常用重要模块

一、目标函数objectives编译模型必选两个参数之一可以通过传递预定义目标函数名字指定目标函数,也可以传递一个Theano/TensroFlow的符号函数作为目标函数,该函数对每个数据点应该只返回...

Keras中自定义目标函数(损失函数)的简单方法

机器学习 python keras

深度学习中的损失函数总结

图片分类里的Center Loss 目标函数,损失函数,代价函数 损失函数度量的是预测值与真实值之间的差异.损失函数通常写做L(y_,y).y_代表了预测值,y代表了真实值. 目标函数可以看做是优化目...

基于Theano的深度学习框架keras及配合SVM训练模型

1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。keras官方文档地址 地址 2.流程...

如何用卷积神经网络CNN识别手写数字集?

http://www.cnblogs.com/charlotte77/p/5671136.html   前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手...

Keras上实现Softmax回归模型

一、分类神经网络构建过程 本例程是在MNIST数据集,构建一个简单分类神经网络,实现对0-9这20个数字的分类。 1.数据预处理 Keras 自身包含 MNIST 这个数据集,再分成训练集和测试集。x...

主流深度学习框架对比

深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4...

十个值得一试的开源深度学习框架

本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索...
  • macyang
  • macyang
  • 2016年12月13日 14:50
  • 1824
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:DeepLearning tutorial(6)易用的深度学习框架Keras简介
举报原因:
原因补充:

(最多只允许输入30个字)