2016.07.05
致读者:本文写于keras开发初期,目前keras已经迭代到1.0版本,很多API都发生了较大的变化,所以本文的粘贴的一些代码可能已经过时,在我的github上有更新后的代码,读者需要的话可以看github上的代码:https://github.com/wepe/MachineLearning更多进阶的使用方法,我会在gist上持续更新:https://gist.github.com/wepe/a05ad572dca002046de443061909ff7a
上一篇文章总结了Keras的基本使用方法,相信用过的同学都会觉得不可思议,太简洁了。十多天前,我在github上发现这个框架的时候,关注Keras的人还比较少,这两天无论是github还是微薄,都看到越来越多的人关注和使用Keras。所以这篇文章就简单地再介绍一下Keras的使用,方便各位入门。
主要包括以下三个内容:
- 训练CNN并保存训练好的模型。
- 将CNN用于特征提取,用提取出来的特征训练SVM。
- 可视化CNN卷积层后的特征图。
仍然以Mnist为例,代码中用的Mnist数据到这里下载