DeepLearning tutorial(7)深度学习框架Keras的使用-进阶

本文介绍了深度学习框架Keras的高级用法,包括加载Mnist数据,训练CNN模型并保存最佳模型,使用CNN特征训练SVM,以及可视化CNN卷积层特征图。通过Python代码示例,展示了如何利用Keras实现模型训练和特征提取,最终CNN-SVM的准确率提升至97.89%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2016.07.05
致读者:本文写于keras开发初期,目前keras已经迭代到1.0版本,很多API都发生了较大的变化,所以本文的粘贴的一些代码可能已经过时,在我的github上有更新后的代码,读者需要的话可以看github上的代码:https://github.com/wepe/MachineLearning

更多进阶的使用方法,我会在gist上持续更新:https://gist.github.com/wepe/a05ad572dca002046de443061909ff7a

上一篇文章总结了Keras的基本使用方法,相信用过的同学都会觉得不可思议,太简洁了。十多天前,我在github上发现这个框架的时候,关注Keras的人还比较少,这两天无论是github还是微薄,都看到越来越多的人关注和使用Keras。所以这篇文章就简单地再介绍一下Keras的使用,方便各位入门。

主要包括以下三个内容:

  • 训练CNN并保存训练好的模型。
  • 将CNN用于特征提取,用提取出来的特征训练SVM。
  • 可视化CNN卷积层后的特征图。

仍然以Mnist为例,代码中用的Mnist数据到这里下载

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值