deep-learning
文章平均质量分 91
du_mengnan
这个作者很懒,什么都没留下…
展开
-
Deep learning系列(十)随机梯度下降
介绍了随机梯度下降法在使用过程中的一些技巧,包括使用动量和在迭代过程中逐步更新学习率。原创 2015-10-16 20:27:55 · 24015 阅读 · 1 评论 -
Deep learning系列(十四)Layer和solver中参数详解
本节对Layer和Solver两个模块中一些重要的参数进行了介绍。原创 2015-10-30 16:43:56 · 3111 阅读 · 3 评论 -
Deep learning系列(七)激活函数
介绍了三种神经网络激活函数。原创 2015-10-15 10:35:46 · 29693 阅读 · 0 评论 -
Deep learning系列(八)参数初始化
介绍了在实际应用中,神经网络参数如何进行初始化。原创 2015-10-15 15:57:44 · 6576 阅读 · 0 评论 -
Deep learning系列(九)目标函数
介绍了神经网络目标函数中的数据项和正则化项的几种构造方式。原创 2015-10-15 21:14:43 · 4578 阅读 · 0 评论 -
Deep learning系列(十三)Transfer learning 和 caffe Fine-tuning
介绍了Transfer Learning及在用caffe进行微调。原创 2015-10-29 20:41:44 · 12048 阅读 · 0 评论 -
Deep learning系列(十二)caffe结构解析
通过Lenet的训练,初步了解了caffe的结构,主要包括caffe重要的四个模块:Net,Layers,Blobs和Solver。原创 2015-10-28 16:57:48 · 3908 阅读 · 0 评论 -
deeplearning系列(三)梯度检验
对计算的梯度值进行梯度检验,确保计算的梯度值是正确无误的。原创 2015-10-08 15:47:48 · 7989 阅读 · 2 评论 -
deeplearning系列(六)卷积神经网络
实现了一个包含卷积层和池化层的卷积神经网络。原创 2015-10-13 15:41:35 · 1564 阅读 · 0 评论 -
deeplearning系列(四)主成分分析与白化
介绍深度学习常用的数据预处理方法:主成分分析与白化。原创 2015-10-08 20:42:53 · 1732 阅读 · 0 评论 -
deeplearning系列(五)实现一个简单的深度神经网络
实现了一个包含两个隐藏层和一个softmax输出层的深度神经网络,训练过程包括逐层贪婪训练和微调两部分。原创 2015-10-12 15:53:28 · 16230 阅读 · 1 评论 -
deeplearning系列(二)自编码神经网络
介绍了一种深度学习 Pre_training技术,即自编码神经网络。原创 2015-10-02 18:44:23 · 14552 阅读 · 2 评论 -
deeplearning系列(一)浅层神经网络
因为项目的需要,这周开始学习深度学习。为了了解深度神经网络,则需要从浅层网络学起,尤其是通过浅层神经网络的推导,掌握反向传播算法的实现原理。本文以一个3层神经网络为例,对从前向传播到反向传播的整个训练过程进行推导,并给出了python代码实现。原创 2015-09-30 16:03:06 · 9717 阅读 · 1 评论 -
Deep learning系列(十一)caffe在ubuntu14.4上的安装
介绍了caffe在ubuntu14.4上的完整安装过程。原创 2015-10-20 16:28:00 · 2704 阅读 · 0 评论 -
Deep learning系列(十五)有监督和无监督训练
介绍了深度学习的发展历程,及在此过程中有监督训练和无监督训练的角色问题。原创 2015-11-02 19:59:56 · 26343 阅读 · 2 评论