Deep learning系列(八)参数初始化

本文探讨了深度学习中参数初始化的重要性,分析了初始化为零的缺点,提出了使用小随机数初始化来打破对称性,并介绍了如何通过调整方差以避免梯度弥散问题。针对不同的神经元类型,如ReLU,给出了相应的初始化建议,包括偏置项的初始化方法。
摘要由CSDN通过智能技术生成

0. 引言

主成分分析与白化一节中介绍了如何对输入数据进行预处理,在这节中介绍与之类似的另一个问题,参数初始化(Weight Initialization)。

在模型训练之初,我们不知道参数的具体分布,然而如果数据经过了合理的归一化(normalization)处理后,对于参数的合理猜测是其中一半是正的,另一半是负的。然后我们想是不是把参数都初始化为0会是比较好的初始化?这样做其实会带来一个问题,经过正向传播和反向传播后,参数的不同维度之间经过相同的更新,迭代的结果是不同维度的参数是一样的,严重地影响了模型的性能。

1. 小的随机数

我们仍然想要参数接近于0,又不是绝对的0,一种可行的做法是将参数初始化为小的随机数,这样做可以打破对称性(symmetry breaking)。python代码如下:

nn_input_dim = 2
nn_hdim = 3
W = 0.001* np.random.randn(nn_input_dim,nn_hdim)

其中randn从均值为0,标准差是1的高斯分布中取样,这样,参数的每个维度来自一个多维的高斯分布。需要注意的是参数初始值不能取得太小,因为小的参数在反向传播时会导致小的梯度,对于深度网络来说,也会产生梯度弥散问题,降低参数的收敛速度。

2. 将方差乘以 1/sq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值