中国汽车品牌口碑榜之:--2013年第3季度福州跑车综合口碑排名

        根据2013年第3季度开元研究对中国汽车品牌口碑的研究,在福州跑车综合口碑排名中,奔驰SL的排名第一,其次是保时捷Panamera和奥迪A5分列第二和三名。详细排名如下表所示:



         注:跑车 参与排名的车型共19种,分别为:奔驰SL、保时捷Panamera、奥迪A5、奔驰CLS、三菱LancerEvo、奔驰CL、奔驰CL级AMG、雷克萨斯LFA、奥迪S5、奥迪TT、盖拉多Gallardo、宝马Z4、尚酷、奥迪A7、奔驰SLK、保时捷Cayman、宝马6系、奥迪RS5、宝马M系。

 

        备注: 监测的十城市为北京、福州、广州、南京、上海、沈阳、郑州、乌鲁木齐、武汉、西安

 

      【中国汽车品牌口碑调查】在线互动调查地址,敬请参与:

        http://s.jw-panel.com/Survey/Do/7932DE44-DF88-4C42-9A7B-183FCACDEF8D

 

        中国汽车口碑榜 概述

        中国汽车口碑是由开元研究自2012年3季度开始的一项有关汽车品牌及车型口碑的大型研究项目。该项目涉及汽车车型及品牌为所有在中国销售的进口、合资、合资自主和自主品牌,共计9大类49小类,厂商品牌超过100个,车型品牌超过600个;该项研究以季度为周期,每年进行4次中国汽车口碑大调查,定期公布调查结果,为消费者购车提供专业、客观、公正的科学依据。

 

        中国汽车口碑榜 研究方法

        中国汽车口碑榜是一项大投入,多维度,高精度,易用性的创新型综合汽车口碑研究项目,该项目采用开元创新的“海陆空立体式调查”模式,包括:线下面访调查,在线互动调查,地面车型调查和网络空间数据挖掘;

与传统单一大样本量调查相比,这种多维度相结合的研究方式,更为全面、客观。具体优势体现在:1、调查覆盖范围更为全面,尤其是高端车品牌消费者涉猎较传统线下调查容易;2、多种方式结合,相互支撑、配合,调查结果更为客观。

         中国汽车口碑榜 评估体系及指标说明

        评估体系:


        指标说明:

        车型/品牌受欢迎指数榜:指在同类车型/品牌中的受欢迎程度,程度越高则指数越高,100只代表同类中最高水平,不代表100%受欢迎;

        车型性能综合满意度指数:指在同类车型中性能综合满意度,满意度越高则指数越高;

       单性能车型满意度指数:指在同类车型中各单一性能的满意度,满意度越高则指数越高, 100只代表同类中最高水平,不代表100%满意;

        综合口碑榜:由受欢迎指数和性能综合满意度指数加权构成。

       (排行榜采用指数百分制,指数范围在60-100之间,同类排名口碑越好,得分越高, 100代表同类中最高水平)

 

        关于开元研究

        开元研究,成立于2002年,是一家专业性的市场研究机构,目前,开元研究的优势研究领域在于媒体影响力研究和品牌影响力研究,开元的研究数据,目前被全国主流广告公司和媒体广泛使用。



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值