HDU 1166 敌兵布阵 (树状数组)

本文详细介绍了如何使用一维树状数组解决敌兵布阵问题,包括树状数组的基本概念、操作方法以及解决具体问题的步骤。通过经典题目实例,深入浅出地阐述了解决此类问题的高效算法策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

敌兵布阵

Time Limit:1000MS    Memory Limit:32768KB    64bit IO Format:%I64d & %I64u

Description

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input

第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output

对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 

Sample Input

    
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
 

Sample Output

  
Case 1: 6 33 59



经典的树状数组模板题~~~


题意:一维线性的直线上,排列着n个兵营,初始每个兵营有固定的人数,有两个操作:一个是添加,把某个兵营增加人数d;二是询问,求某两个兵营之间所有兵营的总人数之和。


心得:裸的不能再裸的一维树状数组~~~


要做这题,先简单讲讲树状数组~~~



如上图所示

c1 = a1

c2 = a1 + a2

c3 = a3

c4 = a1 + a2 + a3 + a4

c5 = a5

c6 = a5 + a6

c7 = a7

c8 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

对于序列a,我们设一个数组C定义C[i] = a[i – 2^k + 1] + … + a[i],其中k为i在二进制下末尾0的个数


求2^k

int lowbit(int x)  
{  
    return x & (-x);  
} 


将a[x]的值加上一个值d

void add(int d,int d)  
{  
    while(x <= n)  
    {  
        c[x] += d;  
        x += lowbit(x);  
    }  
}  


求前x项和

int sum(int x)   
{  
    int ret = 0;  
    while(x > 0)  
    {  
        ret += c[x];  
        x -= lowbit(x);  
    }  
    return ret;  
}

分析:由上面对树状数组的简单介绍,相信搞定本题那是分分钟的事啦~~~





AC代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define INF 0x7fffffff
using namespace std;
const int maxn = 50000 + 10;

char f[10];
int c[maxn];
int n;

int lowbit(int x)
{
    return  x & (-x);
}

int sum(int x)
{
    int ret = 0;
    while(x > 0)
    {
        ret += c[x];
        x -= lowbit(x);
    }
    return ret;
}

int add(int x,int d)
{
    while(x <= n)
    {
        c[x] += d;
        x += lowbit(x);
    }
}

int main()
{
    int T,x,d,v;
    scanf("%d",&T);
    for(int t=1; t<=T; t++)
    {
        memset(c,0,sizeof(c));
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&v);
            add(i,v);
        }
        printf("Case %d:\n",t);
        while(scanf("%s",f)!=EOF)
        {
            if(!strcmp(f, "End"))  break;
            else if(!strcmp(f, "Sub"))
            {
                scanf("%d%d",&x,&d);
                add(x,-d);
            }
            else if(!strcmp(f, "Add"))
            {
                scanf("%d%d",&x,&d);
                add(x,d);
            }
            else
            {
                scanf("%d%d",&x,&d);
                cout<<sum(d)-sum(x-1)<<endl;
            }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值