poj1284

原创 2015年07月07日 10:37:57

求原根

题目描述:

原根个数:满足{ (xi mod p) | 1 <= i <= p-1 } == { 1, …, p-1 }的x称为模p的原根。给出模p,求原根个数

题解:

原根的定义搞到n(x) = phi(phi(x)).)所有的奇素数都是有原根的

重点:

原根怎么得到?下面的证明:
假设奇素数n的原根为r,那么r,r^1,r^2…r^phi(n)是模n不同于的,
由于(r^i)^(phi(n))=(r^phi(n))^i=1(mod n),1<=i<=phi(n),所以对于r^2,r^3..r^phi(n)来说ord(sub n) a|phi(n),即phi(n)是r^i模n的阶的倍数
又因为只有当(i,phi(n))=1时,r^i才是模n的原根,所以一共有phi(phi(n))个原根。
理解:也就是说,r是一个原根的话,那么对于r^i的每一个i,只有和phi(n)互质的r^i才是另一个原根.而且因为都不一样,所以就有phi(phi(n))个.那么额外的信息:如果知道了一个原根,区它的次方和phi互质的就是另一些原根

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(int i = a;i < b;i++)
#define REP_D(i, a, b) for(int i = a;i <= b;i++)

typedef long long ll;

using namespace std;

const int maxn = 1e5 + 100;
int phi[maxn];
int n;
vector<int> prime;
int vis[maxn];
int key = 1e5;

void getPhi()//欧拉筛
{
    CLR(vis);
    phi[1] = 0;
    REP(i, 2, key)
    {
        if(!vis[i])
        {
            prime.push_back(i);
            phi[i] = i - 1;
        }
        for(int j = 0;j < prime.size() && prime[j]*i <= key;j++)
        {
            int tmp = prime[j]*i;
            vis[tmp] = 1;

            if(i%prime[j])
            {
                phi[tmp] = (prime[j]-1)*phi[i];
            }
            else
            {
                phi[tmp] = prime[j]*phi[i];
                break;
            }
        }
    }
}
void solve()
{
    printf("%d\n", phi[n-1]);
}

int main()
{
   // freopen("2Bin.txt", "r", stdin);
    //freopen("3Bout.txt", "w", stdout);
    getPhi();
    while(scanf("%d", &n) != EOF)
    {
        solve();
    }
    return 0;
}

poj1284 Primitive Roots 【原根】

原根Primitive Root   设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)   假设一个数g对于P来说是原根,那么g^i mo...
  • pbj1203
  • pbj1203
  • 2011年04月12日 01:22
  • 1143

POJ1284 Primitive Roots

题目大意:原根模板题&&欧拉函数模板题,求出模P的原根; 思路:首先根据定理:模m有原根的充要条件:m=1,2,4,p^n,2p^n,其中p是奇素数。 如果模m有原根的话,原根的个数是:φ(φ(m...

POJ_1284_Primitive Roots

Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2507  ...

poj-1284 欧拉函数

欧拉函数 定义:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n)  比如:n = 8 时,有 1,3,5,7 与它互质,所以 φ(8) = 4 ...
  • wudi_00
  • wudi_00
  • 2016年07月17日 16:04
  • 65

原根 poj 1284

题意: 一个集合{(X^i mod p} |  1与集合 {1 ,2 ,……, p-1}是相同的 原根定义   原根Primitive Root。    设m是正整数,a是整数,若a模m的阶等...

【POJ 1284】Primitive Roots

求奇素数的原根个数~

原根小结 (poj 1284)

关于原根的一些知识点: 定义1:设,,使得成立的最小的,称为对模的阶,记为。 定理1:如果模有原根,那么它一共有个原根。 定理2:若,,,则。 定理3:如果为素数,那么素数一...
  • whai362
  • whai362
  • 2015年02月05日 10:50
  • 1085

欧拉函数:poj 2407, poj 1284,poj 2478,poj 3090,poj 3696,poj 3358

定义:欧拉函数         定理:求解欧拉函数的值可用如下定理实现(通过n的素因子分解)          算法实现: (一)直接实现:直接套用定理求解欧拉函数值 ll phi(ll n) {...

IEEE-1284驱动

  • 2014年04月21日 14:16
  • 90KB
  • 下载

MC9S12XEA1284_IcpdfCom_110408

  • 2011年07月01日 10:38
  • 8.26MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj1284
举报原因:
原因补充:

(最多只允许输入30个字)