关闭

poj1284

181人阅读 评论(0) 收藏 举报
分类:

求原根

题目描述:

原根个数:满足{ (xi mod p) | 1 <= i <= p-1 } == { 1, …, p-1 }的x称为模p的原根。给出模p,求原根个数

题解:

原根的定义搞到n(x) = phi(phi(x)).)所有的奇素数都是有原根的

重点:

原根怎么得到?下面的证明:
假设奇素数n的原根为r,那么r,r^1,r^2…r^phi(n)是模n不同于的,
由于(r^i)^(phi(n))=(r^phi(n))^i=1(mod n),1<=i<=phi(n),所以对于r^2,r^3..r^phi(n)来说ord(sub n) a|phi(n),即phi(n)是r^i模n的阶的倍数
又因为只有当(i,phi(n))=1时,r^i才是模n的原根,所以一共有phi(phi(n))个原根。
理解:也就是说,r是一个原根的话,那么对于r^i的每一个i,只有和phi(n)互质的r^i才是另一个原根.而且因为都不一样,所以就有phi(phi(n))个.那么额外的信息:如果知道了一个原根,区它的次方和phi互质的就是另一些原根

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(int i = a;i < b;i++)
#define REP_D(i, a, b) for(int i = a;i <= b;i++)

typedef long long ll;

using namespace std;

const int maxn = 1e5 + 100;
int phi[maxn];
int n;
vector<int> prime;
int vis[maxn];
int key = 1e5;

void getPhi()//欧拉筛
{
    CLR(vis);
    phi[1] = 0;
    REP(i, 2, key)
    {
        if(!vis[i])
        {
            prime.push_back(i);
            phi[i] = i - 1;
        }
        for(int j = 0;j < prime.size() && prime[j]*i <= key;j++)
        {
            int tmp = prime[j]*i;
            vis[tmp] = 1;

            if(i%prime[j])
            {
                phi[tmp] = (prime[j]-1)*phi[i];
            }
            else
            {
                phi[tmp] = prime[j]*phi[i];
                break;
            }
        }
    }
}
void solve()
{
    printf("%d\n", phi[n-1]);
}

int main()
{
   // freopen("2Bin.txt", "r", stdin);
    //freopen("3Bout.txt", "w", stdout);
    getPhi();
    while(scanf("%d", &n) != EOF)
    {
        solve();
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:43351次
    • 积分:2403
    • 等级:
    • 排名:第15471名
    • 原创:206篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    最新评论