视频人数统计(opencv)

步骤:
1.视频图像灰度化img
2,选取第一帧图像first_img,视频每帧和第一帧相减,得到src
3,对src图片进行 阈值,滤波处理
4,查找处理好图片的边界findContours;
5,对边界区域进行统计,满足条件的进行计数

代码实 现:

using namespace std;
using namespace cv;


int main(){
    Mat img, src, frame, frame_gray, first_frame, threshold_src, gass_src, dilate_src;

    VideoCapture cap("m.avi");
    cap >> first_frame;
    cvtColor(first_frame, first_frame, CV_BGR2GRAY);
    int num=0;
    int zz = 1;
    
### 使用 OpenCV 进行人流量统计的核心方法 在计算机视觉领域,OpenCV 提供了许多功能强大的工具来支持人数统计的任务。以下是实现这一目标的具体技术细节: #### 1. 背景建模与前景提取 为了检测视频中的移动对象,背景减除是一种常用的技术。可以通过 `cv2.createBackgroundSubtractorMOG2()` 或者 `cv2.createBackgroundSubtractorKNN()` 方法创建背景模型[^4]。这些算法能够区分静态背景和动态前景,从而帮助定位运动的目标。 ```python import cv2 # 创建 MOG2 背景减除器实例 back_sub = cv2.createBackgroundSubtractorMOG2() cap = cv2.VideoCapture('video.mp4') while True: ret, frame = cap.read() if not ret: break fg_mask = back_sub.apply(frame) # 获取前景掩码 cv2.imshow('Foreground Mask', fg_mask) if cv2.waitKey(30) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` #### 2. 对象检测与边界框绘制 一旦获得了前景区域,就可以进一步处理以识别具体的对象。通常会采用形态学操作去除噪声并增强分割效果。之后利用轮廓查找函数找到每个独立的对象,并用矩形包围它们[^2]。 ```python _, thresh = cv2.threshold(fg_mask, 25, 255, cv2.THRESH_BINARY) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) contours, _ = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: area = cv2.contourArea(cnt) if area > 500: # 设置面积阈值过滤小的干扰物 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) ``` #### 3. 计算穿越虚拟线的人数 当多个行人穿过特定位置时,可以在场景中定义一条虚拟直线作为计数触发条件。每当某个被标记的个体跨越这条线,则增加相应的计数值。 ```python line_y = int(height / 2) # 假设水平方向上的中心线为分界点 up_count = down_count = 0 for contour in filtered_contours: centroid_x, centroid_y = compute_centroid(contour) if previous_position[centroid_id][1] >= line_y and centroid_y < line_y: up_count += 1 elif previous_position[centroid_id][1] <= line_y and centroid_y > line_y: down_count += 1 print(f'Upward Count: {up_count}, Downward Count: {down_count}') ``` #### 4. 结果展示与性能优化 最后一步就是将所有的统计数据可视化出来给用户查看。同时考虑到实时性的需求,在部署阶段还需要注意选用合适的参数配置以及硬件加速手段提升效率。 --- ###
评论 63
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值