tf30: center loss及其mnist上的应用

本文介绍了Center Loss的概念,它是ECCV2016年论文中的一个方法,旨在改善深度人脸识别。通过在softmax损失基础上增加正则项,使不同类别的样本特征向量更聚集。在MNIST数据集上展示了使用和不使用Center Loss的训练和测试结果,显示了Center Loss能提高模型的聚类效果。此外,提供了TensorFlow实现Center Loss的代码示例,并用TensorBoard进行了可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多机器学习资料,公众号MachineLN,邀请您扫码关注:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值