tf34:从ckpt中读取权重值

在TensorFlow里,提供了tf.train.NewCheckpointReader来查看model.ckpt文件中保存的变量信息。

一个简单的例子:

import tensorflow as tf
  
w = tf.Variable(2, dtype=tf.float32, name='w')  
b = tf.Variable(1, dtype=tf.float32, name='b')  

x = tf.placeholder(tf.float32, shape=[1], name='x')  
  
logit = w * x + b
  
init = tf.initialize_all_variables()  
  
saver = tf.train.Saver()  
  
with tf.Session() as sess:  
    sess.run(init)  
    saver.save(sess, "./model.ckpt") 


import tensorflow as tf
  
reader = tf.train.NewCheckpointReader("./model.ckpt")  
  
variables = reader.get_variable_to_shape_map()  
  
for v in variables: 
    w = reader.get_tensor(v)  
    print(type(w))  
    # print(w.shape) 
    # print (w[0]) 
    print(w)


### AutoDL 训练中断后的恢复机制 当遇到AutoDL平台由于账户余额不足而导致训练任务被中断的情况时,可以采取特定措施来尝试恢复并继续未完成的训练过程。通常情况下,在支持断点续训功能的服务环境中,模型的状态会被周期性保存到持久化存储位置。 对于AutoDL这类云服务平台而言,如果服务本身提供了检查点(checkpoint)机制,则可以在重新启动训练作业前加载最近一次成功保存的checkpoint文件[^1]。这允许从中断处恢复而不是从头开始整个训练流程。 另外得注意的是,部分框架如TensorFlow、PyTorch等都内置有良好的checkpoint管理工具,能够帮助实现这一目标: #### TensorFlow Checkpoint 实现方式 ```python import tensorflow as tf # 定义变量v, 并创建Saver对象用于保存/读取模型参数. v = ... saver = tf.train.Saver() with tf.Session() as sess: # 尝试载入已有的checkpoints saver.restore(sess, "/tmp/model.ckpt") print("Model restored.") # 执行更多操作... ``` #### PyTorch Checkpoint 实现方法 ```python model = TheModelClass(*args, **kwargs) optimizer = TheOptimizerClass(*args, **kwargs) checkpoint = torch.load(PATH) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # 可选: 加载其他状态信息比如epoch数或者loss epoch = checkpoint['epoch'] loss = checkpoint['loss'] model.eval() # - 或者 - model.train() ``` 为了防止未来再次发生类似的意外情况,建议定期监控账户资金状况,并设置足够的预充额度以维持长时间运行的任务不受影响;同时也应该合理规划实验计划,确保每次提交的任务能够在预算范围内顺利完成。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值