关闭
当前搜索:

[置顶] PyTorch使用总览

深度学习框架训练模型时的代码主要包含数据读取、网络构建和其他设置三方面,基本上掌握这三方面就可以较为灵活地使用框架训练模型。PyTorch是Facebook的官方深度学习框架之一,到现在开源1年时间,势头非常猛,相信使用过的人都会被其轻便和快速等特点深深吸引,因此这篇博客从整体上介绍如何使用PyTorch。 PyTorch的官方github地址:https://github.com/pytorc...
阅读(151) 评论(0)

[置顶] MxNet使用总览

写这篇博文的初衷是希望能整理下自己在使用MxNet过程中对这个框架的理解。详细的介绍都给出了链接,这篇相当于一个概括,希望能对这个框架有一个总的认识,内容会不断补充,有疑问的欢迎交流,谢谢。1、下载MxNet并编译 MxNet的官方网址:http://mxnet.io/get_started/install.html 我这里选择如下安装方式:然后按照 Build the MXNet core s...
阅读(2053) 评论(0)

[置顶] 损失函数改进方法总览

这篇博客主要列个引导表,简单介绍在深度学习算法中损失函数可以改进的方向,并给出详细介绍的博客链接,会不断补充。1、Large Marge Softmax Loss ICML2016提出的Large Marge Softmax Loss(L-softmax)通过在传统的softmax loss公式中添加参数m,加大了学习的难度,逼迫模型不断学习更具区分性的特征,从而使得类间距离更大,类内距离更小。核...
阅读(1027) 评论(1)

MXNet框架的SSD算法代码介绍(七):eval_metric.py

这篇博客介绍测试过程中的评价函数,在MXNet框架下都可以通过继承mx.metric.EvalMetric类进行实现。 该项目的evaluate文件夹下的一个脚本eval_metric.py定义了关于测试过程中的评价函数。这个脚本主要涉及两个类:MApMetric和VOC07MApMetric,后者是继承前者并重写了一些方法得到的,因此MApMetric类是核心。这两者都是用来计算object ......
阅读(59) 评论(0)

MXNet框架的SSD算法代码介绍(六):metric.py

这篇博客介绍训练过程中的评价函数,在MXNet框架下都可以通过继承mx.metric.EvalMetric类进行实现。 该项目的train文件夹下的metric.py定义了一个类:MultiBoxMetric,该类可以作为训练时候分类和回归损失的计算。 import mxnet as mx import numpy as np class MultiBoxMetric(mx.metric......
阅读(20) 评论(0)

MXNet框架的SSD算法代码介绍(五):common.py

上一篇博客:MXNet框架的SSD算法代码介绍(四):symbol_builder.py 介绍了网络主干结构构建、损失函数定义等代码,但是网络的详细构建内容是在common.py脚本中的两个重要函数:multi_layer_feature和multibox_layer进行的,比如基于分类网络新增加的一些层、预测层的定义等,因此接下来这篇博客介绍common.py脚本。 common.py这个......
阅读(27) 评论(0)

MXNet框架的SSD算法代码介绍(四):symbol_builder.py

上一篇博客:MXNet框架的SSD算法代码介绍(三):symbol_factory.py 主要涉及网络结构构建时候的一些参数设置,最终是通过调用symbol_builder.py脚本的get_symbol_train函数完成网络的主干结构构建和损失函数的定义,因此接下来介绍symbol_builder.py脚本。 symbol_builder.py这个脚本主要包括import_module,ge......
阅读(17) 评论(0)

MXNet框架的SSD算法代码介绍(三):symbol_factory.py

上一篇博客:MXNet框架的SSD算法代码介绍(二):train_net.py 介绍了几乎所有的训练代码,在训练代码中比较重要的步骤应该就是网络结构的搭建,这也是SSD算法的核心。因此接下来介绍的symbol_factory.py就是网络结构搭建的起始脚本,主要包含网络的一些配置信息。 该脚本主要包含get_config,get_symbol_train,get_symbol三个函数,后面两个......
阅读(19) 评论(0)

MXNet框架的SSD算法代码介绍(二):train_net.py

上一篇:MXNet框架的SSD算法代码介绍(一):train.py 主要介绍了训练模型的一些参数配置信息,可以看出在训练脚本train.py中主要是调用train_net.py脚本中的train_net函数进行训练的,因此这一篇博客介绍train_net.py脚本的内容。 train_net.py这个脚本一共包含convert_pretrained,get_lr_scheduler,train......
阅读(14) 评论(0)

MXNet框架的SSD算法代码介绍(一):train.py

SSD算法是object detection领域比较经典的算法,github上有一个写得比较好的MXNet版本的实现代码,项目地址:https://github.com/zhreshold/mxnet-ssd,想要本地实现可以参考项目地址中README.md的介绍或者参考博客:SSD算法的MXNet实现。 接下来这一系列博客想介绍该代码中关于实现SSD算法的一些细节,也会涉及部分Python语言......
阅读(23) 评论(0)

RA-CNN算法笔记

论文:Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition 论文链接:http://openaccess.thecvf.com/content_cvpr_2017/papers/Fu_Look_Closer_to_CVPR_201...
阅读(233) 评论(0)

MobileNet v2 算法笔记

论文:Inverted Residuals and Linear Bottlenecks Mobile Networks for Classification, Detection and Segmentation 链接:https://128.84.21.199/abs/1801.04381 第三方代码(可用于在ImageNet数据集上训练):https://github.com/mirac...
阅读(628) 评论(0)

PyTorch源码解读之torchvision.transforms

PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。这3个子包的具体介绍可以参考官网:http://pytorch.org/docs/master/torchvision/index.html。具体代码可以参考github:...
阅读(185) 评论(0)

PyTorch源码解读之torchvision.models

PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。这3个子包的具体介绍可以参考官网:http://pytorch.org/docs/master/torchvision/index.html。具体代码可以参考github:...
阅读(519) 评论(0)

PyTorch源码解读之torch.utils.data.DataLoader

PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,因此该接口有点承上启下的...
阅读(592) 评论(3)

TSN算法的PyTorch代码解读(测试部分)

这篇博客介绍TSN算法的PyTorch代码的测试部分,建议先看训练部分的代码解读:TSN算法的PyTorch代码解读(训练部分),test_moels.py是测试模型的入口。 前面模块导入和命令行参数配置方面和训练代码类似,不细讲。 import argparse import time import numpy as np import torch.nn.parallel import t...
阅读(272) 评论(0)

TSN算法的PyTorch代码解读(训练部分)

这篇博客来读一读TSN算法的PyTorch代码,总体而言代码风格还是不错的,多读读优秀的代码对自身的提升还是有帮助的,另外因为代码内容较多,所以分训练和测试两篇介绍,这篇介绍训练代码,介绍顺序为代码运行顺序。TSN算法的介绍可以参考博客TSN(Temporal Segment Networks)算法笔记。 论文:Temporal Segment Networks: Towards Good Pr...
阅读(443) 评论(2)

TSN(Temporal Segment Networks)算法笔记

论文:Temporal Segment Networks: Towards Good Practices for Deep Action Recognition 论文链接:https://arxiv.org/abs/1608.00859 代码链接一:https://github.com/yjxiong/temporal-segment-networks 代码链接二:https://githu...
阅读(420) 评论(2)

Pseudo-3D Residual Networks算法的pytorch代码

本篇博客是对第三方实现的Pseudo-3D Residual Networks算法的pytorch代码进行介绍,介绍顺序为代码调试顺序,建议先阅读论文或相关博客。 论文:Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks。 代码地址:https://github.com/qijiezhao/pseud...
阅读(418) 评论(0)

Pseudo-3D Residual Networks 算法笔记

论文:Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks 论文链接:http://openaccess.thecvf.com/content_ICCV_2017/papers/Qiu_Learning_Spatio-Temporal_Representation_ICCV_2017_paper.pdf...
阅读(474) 评论(0)

MTCNN算法及代码笔记

论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https://arxiv.org/abs/1604.02878 官方代码链接:https://github.com/kpzhang93/MTCNN_face_detection_alignment 其他代码实现...
阅读(722) 评论(0)

Face R-FCN算法笔记

论文:Detecting Faces Using Region-based Fully Convolutional Networks 链接:https://arxiv.org/abs/1709.05256腾讯AI Lab的文章,总结起来就是在R-FCN框架上做了一些修改,使其更好地应用在人脸检测上,修改主要包含三个方面,可以看原文的这段话:We improve the R-FCN framewor...
阅读(382) 评论(0)
96条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:217609次
    • 积分:3223
    • 等级:
    • 排名:第12630名
    • 原创:95篇
    • 转载:1篇
    • 译文:0篇
    • 评论:240条
    博客专栏
    最新评论