关闭

[置顶] MxNet使用总览

写这篇博文的初衷是希望能整理下自己在使用MxNet过程中对这个框架的理解。详细的介绍都给出了链接,这篇相当于一个概括,希望能对这个框架有一个总的认识,内容会不断补充,有疑问的欢迎交流,谢谢。1、下载MxNet并编译 MxNet的官方网址:http://mxnet.io/get_started/install.html 我这里选择如下安装方式:然后按照 Build the MXNet core s...
阅读(601) 评论(0)

[置顶] 损失函数改进方法总览

这篇博客主要列个引导表,简单介绍在深度学习算法中损失函数可以改进的方向,并给出详细介绍的博客链接,会不断补充。1、Large Marge Softmax Loss ICML2016提出的Large Marge Softmax Loss(L-softmax)通过在传统的softmax loss公式中添加参数m,加大了学习的难度,逼迫模型不断学习更具区分性的特征,从而使得类间距离更大,类内距离更小。核...
阅读(495) 评论(1)

自学网络结构(二):Learning Transferable Architectures for Scalable Image Recognition

论文:Learning Transferable Architectures for Scalable Image Recognition 链接:https://arxiv.org/abs/1707.07012Google Brain的作品,关于用神经网络学习另一个神经网络的结构。我们知道现在图像分类、检测算法的优劣很大一部分取决于网络结构的设计,最近今年比较优秀的分类网络结构比如VGG,ResN...
阅读(58) 评论(0)

自学网络结构(一):Neural Architecture Search With Reinforcement Learning

论文:Neural Architecture Search With Reinforcement Learning 链接:https://arxiv.org/abs/1611.01578 代码链接:https://github.com/tensorflow/models这是ICLR2017的文章,讲述如果用强化学习(reinforcement learning)来学习一个最优的网络结构。这篇文章...
阅读(59) 评论(0)

PyTorch入门代码——训练一个图像分类模型

参考链接:http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html这是一个适合有一些深度学习基础且想入门PyTorch这个深度学习框架的同学看的博客。PyTorch的文档质量比较高,入门较为容易,这篇博客选取上面链接里面的官方例子,介绍如何用PyTorch训练一个ResNet模型用于图像分类,代码逻辑非常清晰,基本上和...
阅读(106) 评论(0)

深度学习&机器学习相关资料汇总

这篇博客主要是整理下自己看过的一些深度学习及机器学习的资料,希望可以给那些想要入门的小伙伴提供一点帮助,同时也是给自己梳理下思路,该博客会持续更新。目前主要分两大部分整理:一部分是理论基础;另一部分是代码实现。机器学习&深度学习基础知识1、吴恩达-deeplearning.ai 链接:http://mooc.study.163.com/smartSpec/detail/1001319001.htm...
阅读(43) 评论(0)

MXNet框架如何自定义evaluation metric

使用深度学习框架训练模型的时候都需要用到评价标准,比如准确率等,那么在MXNet框架下,这些评价标准(Evaluation Metric)是怎么实现的呢?如果我们要自定义一个不一样的评价标准要怎么做?一起来了解下吧。首先来看看在MXNet框架下关于evaluation metric的最基本的类和脚本。mxnet.metric.EvalMetric是MXNet框架中计算评价标准(evaluation...
阅读(133) 评论(0)

MXNet如何生成.lst文件和.rec文件

MXNet框架用于做图像相关的项目时,读取图像主要有两种方式:第一种是读.rec格式的文件,类似Caffe框架中LMDB,优点是.rec文件比较稳定,移植到别的电脑上也能复现,缺点是占空间(.rec文件的大小基本上和图像的存储大小差不多),而且增删数据不大灵活。第二种是.lst和图像结合的方式,首先在前面生成.rec文件的过程中也会生成.lst文件,这个.lst文件就是图像路径和标签的对应列表,也就...
阅读(204) 评论(0)

MXNet框架的resize操作

MXNet框架的图像预处理操作基本上都在/mxnet/python/mxnet/image.py脚本中,这里的/mxnet指的是官方github的mxnet项目。这篇博客介绍在image.py脚本中的resize操作,主要包含两个类:mxnet.image.ResizeAug和mxnet.image.ForceResizeAug。mxnet.image.ResizeAug(size,interp=2...
阅读(184) 评论(0)

SSD算法的MXNet实现

前段时间看到一个SSD(SSD:single shot multibox detector )算法的MXNet实现,代码风格不错,特来分享。 SSD算法的介绍可以参看博客:SSD(single shot multibox detector)算法及Caffe代码详解github地址:https://github.com/zhreshold/mxnet-ssd接下来结合亲自实验列一下如何跑这个模型,系...
阅读(367) 评论(2)

linux和windows、linux和linux传文件

传输的前提是linux机器需要先安装ssh。linux和windows之间:我采用的是pscp方式。 首先下载pscp:pscp下载路径 然后将其放入windows的system32 文件夹下,这样在dos命令窗口中就能直接调用使用了。要传送文件的时候,假设你要将windows下的d:/test.txt传到IP为10.100.200.11的linux机器的/home/user1文件夹下,假设li...
阅读(128) 评论(0)

MSDNet(Multi-Scale Dense Convolutional Networks)算法笔记

论文:Multi-Scale Dense Convolutional Networks for Efficient Prediction 论文链接:https://arxiv.org/abs/1703.09844 代码地址:https://github.com/gaohuang/MSDNetDenseNet的一作的作品,先来聊聊文章的出发点。对于分类网络的测试而言,有些输入图像是网络容易分类的,...
阅读(515) 评论(0)

FCIS算法的MXNet实现

论文:Fully Convolutional Instance-aware Semantic Segmentation github地址:https://github.com/msracver/FCISFCIS(Fully Convolutional Instance-aware Semantic Segmentation)算法是COCO2016分割的冠军,接下来是自己记录的跑该算法demo和训练...
阅读(511) 评论(2)

SENet(Squeeze-and-Excitation Networks)算法笔记

论文:Squeeze-and-Excitation Networks 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENetSequeeze-and-Excitation(SE) block并不是一个完整的网络结构,而是一个子结构,可以嵌到其他分类或检测模型中,作者采用SENet block和...
阅读(490) 评论(0)

YOLO9000算法详解

论文: YOLO9000:Better,Faster,Stronger 论文链接:https://arxiv.org/abs/1612.08242YOLO9000是CVPR2017的最佳论文提名。首先讲一下这篇文章一共介绍了YOLOv2和YOLO9000两个模型,二者略有不同。前者主要是YOLO的升级版,后者的主要检测网络也是YOLOv2,同时对数据集做了融合,使得模型可以检测9000多类物体。而...
阅读(712) 评论(0)

HORQ(High-Order Residual Quantization)算法详解

论文:Performance Guaranteed Network Acceleration via High-Order Residual Quantization 论文链接:https://pan.baidu.com/s/1bMgbme 暂无代码这是ICCV2017的文章,作者主要来自上海交大。我们知道模型压缩方面可以做到不大影响准确率,但是如果同时要做到模型加速还不影响准确率的就非常少了,...
阅读(727) 评论(0)

DSD(Dense-Sparse-Dense Training)算法详解

论文:DSD: Dense-Sparse-Dense Training for Deep Neural Networks 论文链接:https://arxiv.org/pdf/1607.04381.pdf 模型下载地址:https://songhan.github.io/DSD.这是Song Han发在ICLR2017上的文章,我们知道Song Han的研究领域主要是模型压缩,模型加速等,但是这...
阅读(726) 评论(0)

Weighted-Entropy-based Quantization for Deep Neural Networks

论文:Weighted-Entropy-based Quantization for Deep Neural Networks 论文链接这是CVPR2017的一篇文文章,是用基于weight entropy做深度学习模型quantization的模型压缩和加速算法。深度学习模型压缩和加速是近年来的一个研究热点,也是将深度学习模型部署到移动端的必经之路,一方面要压缩模型的大小,减少存储,另一方面要减...
阅读(408) 评论(3)

ThiNet算法详解

论文:ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression 论文链接:https://arxiv.org/abs/1707.06342prune(剪枝)是深度学习模型压缩和加速的重要方法。ThiNet是ICCV2017的文章,主要通过prune方式达到模型压缩和加速,prune以filter(卷积核)为单...
阅读(612) 评论(0)

XNOR-Net算法详解

论文:XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 链接:https://arxiv.org/abs/1603.05279 代码地址:http://allenai.org/plato/xnornet模型压缩和加速是深度学习算法应用在移动端必须要解决的问题,也是近年来的研究热点,这篇文章就是...
阅读(947) 评论(0)

Precision,Recall,F1score,Accuracy的理解

Precision,Recall,F1score,Accuracy四个概念容易混淆,这里做一下解释。假设一个二分类问题,样本有正负两个类别。那么模型预测的结果和真实标签的组合就有4种:TP,FP,FN,TN,如下图所示。这4个分别表示:实际为正样本你预测为正样本,实际为负样本你预测为正样本,实际为正样本你预测为负样本,实际为负样本你预测为负样本。那么Precision和Recall表示什么意思?一般...
阅读(393) 评论(0)

Caffe用训练好的模型测试图片

这是一个python脚本,用训练好的caffemodel来测试图片,接下来直接上代码,里面有详细解释,大部分你要修改的只是路径,另外在这个脚本的基础上你可以根据自己的需要进行改动。需要的东西:训练好的caffemodel,deploy.prototxt(可以从你的train.prototxt修改得到),可以用的caffe,待测试的图像(比如jpg)import sys caffe_root='/yo...
阅读(404) 评论(0)
69条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:94634次
    • 积分:1700
    • 等级:
    • 排名:千里之外
    • 原创:68篇
    • 转载:1篇
    • 译文:0篇
    • 评论:130条
    最新评论