Group sample——比较有意思的人脸检测算法

本文深入探讨了一篇发表在CVPR2019的论文,研究了不同尺寸样本数量分布对人脸检测效果的影响。通过Group Sampling操作,论文提出平衡不同尺寸样本数量,从而提升检测模型性能。实验表明,这种方法对小尺寸目标检测效果尤为显著,且与FPN等方法有本质区别。
摘要由CSDN通过智能技术生成

论文:Group Sampling for Scale Invariant Face Detection
论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Ming_Group_Sampling_for_Scale_Invariant_Face_Detection_CVPR_2019_paper.pdf

这篇是发表在CVPR2019的关于人脸检测的文章,个人觉得是个很棒的工作,而且应该可以扩展到通用的目标检测算法。这篇文章的出发点是什么呢?我们知道不管是人脸检测还是通用目标检测,都会遇到输入图像中目标尺寸差异较大的情况,这种情况对检测效果最直观的影响就是小目标尺寸检测效果不好,因此CVPR2017提出的FPN算法基于融合后的多个特征层进行预测,很好地改善了这个问题。

但是FPN为什么有效呢?这篇文章通过各种对比实验发现:将FPN修改为基于单个特征层进行预测同样能够取得接近多个特征层的实验结果,而修改前后不同尺寸的样本数量分布非常类似,在此基础上作者继续探究不同尺寸的样本数量分布对检测效果效果的影响,最终得到一个结论:不同尺寸的样本数量不均衡是导致检测模型效果不好的原因,这个样本既包括正样本,也包括负样本,因此最后通过设计group sample操作使得不同尺寸的样本数量均衡,从而提升效果

可以看出这篇论文其实是在揭示不同尺寸的样本分布情况对检测效果的影响,角度比较新颖

这篇文章基本上是围绕Figure1、Table1和Figure2来讲,读者可以对照着看。
在Figure1中作者列了5个网络,这5个网络是后续实验对比和论文创新点介绍的核心,注意看区别。(a)和(b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值