SPADE(GauGAN)算法笔记

SPADE(Spatially-Adaptive Normalization)是CVPR 2019的一篇Oral论文,它解决了在语义图像合成中传统归一化层易丢失信息的问题。该算法通过适应性地计算γ和β,改进了BN层,能根据语义分割图生成逼真的图像。与pix2pix和pix2pixHD相比,SPADE在保持细节和风格方面表现出色,同时支持多样化的图像生成。其网络结构由多个SPADE ResBlk组成,判别器采用了Patch-GAN。通过编码网络,SPADE还能实现输入图像风格的转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Semantic Image Synthesis with Spatially-Adaptive Normalization
论文链接:https://arxiv.org/abs/1903.07291
代码链接:https://github.com/NVlabs/SPADE
项目主页链接:https://nvlabs.github.io/SPADE/

图像生成领域最近今年有不少出色的作品,比如英伟达在GTC 2019上展示的GauGAN,随后很多AI公众号都推送了相关文章,且大部分文章中将这个算法(GauGAN)称之为神笔马良,这是因为GauGAN可以根据用户画的简单图像(如Figure1最上面一行的4张图像所示)得到合成的实际图像(如Figure1右下角的12张图所示),在合成时用户还可以选择合成图像的风格(如Figure1最左边的3张图像所示),因此可以得到非常多样的合成结果。
在这里插入图片描述
虽然在GTC和大部分的介绍文章中都将这篇论文提出的算法称之为GauGAN,不过在这篇论文中作者将这个算法简称为SPADE,和论文名中的Spatially-Adaptive Normalization对应,接下来我们就都称之为SPADE了,大家知道本质上和GauGAN是一个算法就行了。

SPADE发表在CVPR 2019的Oral文章,CVPR 2019上还有一篇令人印象深刻的图像生成论文:StyleGAN,获得了最佳论文提名,在我看来这2篇文章都非常值得细细品读。这2篇论文的大部分作者都来自英伟达,不得不

### SPADE算法介绍 SPADE (Sequential PAttern Discovery using Equivalence classes) 是一种用于频繁序列模式挖掘的有效算法。该算法通过构建基于前缀的等价类来减少计算复杂度并提高效率[^4]。 #### 关键特性 - **前缀树结构**:利用前缀的概念,将具有相同前缀的项集归入同一类别。 - **等价类划分**:对于任意两个序列 \( X \) 和 \( Y \),如果两者拥有相同的长度为 \( k \) 的前缀,则认为它们属于同一个等价类。 - **高效性**:相比其他传统的方法,如 GSP 算法SPADE 能够显著降低内存消耗和处理时间。 ### 实现方式 以下是 Python 中的一个简化版实现: ```python from collections import defaultdict, Counter class SPADE: def __init__(self, transactions, min_support): self.transactions = transactions self.min_support = min_support def _build_prefix_tree(self): prefix_tree = {} for tid, items in enumerate(self.transactions): current_node = prefix_tree for item in items: if item not in current_node: current_node[item] = {"support": set(), "children": {}} node = current_node[item] node["support"].add(tid) current_node = node["children"] return prefix_tree def find_frequent_patterns(self): frequent_patterns = [] prefix_tree = self._build_prefix_tree() stack = [(prefix_tree, [])] while stack: tree, path = stack.pop() for key, value in tree.items(): support_size = len(value['support']) if support_size >= self.min_support: pattern = tuple(path + [key]) frequent_patterns.append((pattern, support_size)) children = value.get('children', {}) if children: stack.append((children, path + [key])) return frequent_patterns ``` 此代码片段展示了如何创建一个简单的 `SPADE` 类来进行频繁序列模式挖掘。主要功能包括建立前缀树 `_build_prefix_tree()` 以及寻找满足最小支持度阈值的频繁模式 `find_frequent_patterns()`.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值