关闭

[色多项式] UOJ #308. 【UNR #2】UOJ拯救计划 & SRM 717 div1 AcyclicOrientation

165人阅读 评论(0) 收藏 举报
分类:

一个图的 k 染色数是关于 kn 次(?) 多项式
称为色多项式
那么这里模6 我们只要知道模2和模3的值
然后分类讨论下就好了
一张图的0染色数是0,1染色数等于[m=0],2染色数与二分图的联通块个数有关

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=100005;

struct edge{
  int u,v,next;
}G[N<<2];
int head[N],inum;
inline void add(int u,int v,int p){
  G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}
#define V G[p].v
int fat[N],depth[N];
int flag=0;
inline void dfs(int u,int fa){
  fat[u]=fa; depth[u]=depth[fa]+1;
  for (int p=head[u];p;p=G[p].next)
    if (V!=fa){
      if (!depth[V]){
    dfs(V,u);
      }else if (depth[V]<depth[u]){
    flag|=((depth[u]-depth[V])%2==0);
      }
    }
}

int n,m,K;

inline int Pow(int a,int b,int P){
  int ret=1;
  for (;b;b>>=1,a=a*a%P)
    if (b&1)
      ret=ret*a%P;
  return ret;
}

int main(){
  int T,x,y;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(T);
  while (T--){
    read(n); read(m); read(K); inum=0; cl(head); 
    for (int i=1;i<=m;i++)
      read(x),read(y),add(x,y,++inum),add(y,x,++inum);
    int mod2,mod3;
    if (~K&1)
      mod2=0;
    else
      mod2=(m==0);
    if (K%3==0)
      mod3=0;
    else if (K%3==1)
      mod3=(m==0);
    else{
      cl(depth); cl(fat); int cnt=0; flag=0;
      for (int i=1;i<=n;i++)
    if (!depth[i])
      cnt++,dfs(i,0);
      if (flag) mod3=0;
      else mod3=Pow(2,cnt,3);
    }
    for (int i=0;i<6;i++)
      if (i%2==mod2 && i%3==mod3)
    printf("%d\n",i);
  }
  return 0;
}

TC那个题是求把无向图定向成DAG的方案数
有定理,也可见这里

The number of Acyclic Orientations of an undirected graph is given by (1)NP(1), where P is the chromatic polynomial of the given graph.

// BEGIN CUT HERE  
#include<conio.h>
#include<sstream>
// END CUT HERE  
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<string>
#include<set>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long ll;

const int N=105;
const int M=N*N;

struct edge{
  int u,v,next;
}G[M];
int head[N],inum;
inline void add(int u,int v,int p){
  G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}
#define V G[p].v
int depth[N];
int flag=0;
inline void dfs(int u,int fa){
  depth[u]=depth[fa]+1;
  for (int p=head[u];p;p=G[p].next)
    if (!depth[V])
      dfs(V,u);
    else if (depth[V]<depth[u] && (depth[u]-depth[V])%2==0)
      flag=1;
}

inline int Pow(int a,int b){
  int ret=1;
  for (;b;b>>=1,a=a*a%3)
    if (b&1)
      ret=ret*a%3;
  return ret;
}

class AcyclicOrientation{
public:
  int count(int n, vector <int> u, vector <int> v){
    cl(head); inum=0; cl(depth); flag=0;
    for (int i=0;i<(int)u.size();i++)
      add(u[i]+1,v[i]+1,++inum),add(v[i]+1,u[i]+1,++inum);
    int m2=(u.size()==0),m3,C=0;
    for (int i=1;i<=n;i++)
      if (!depth[i])
    dfs(i,0),C++;
    if (flag)
      m3=0;
    else
      m3=Pow(2,n+C);
    for (int i=0;i<6;i++)
      if (i%2==m2 && i%3==m3)
    return i;
  }


  // BEGIN CUT HERE
public:
  void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); }
private:
  template <typename T> string print_array(const vector<T> &_V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = _V.begin(); iter != _V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
  void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
  void test_case_0() { int Arg0 = 3; int Arr1[] = {0, 1, 0}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[0]))); int Arr2[] = {2, 2, 1}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 0; verify_case(0, Arg3, count(Arg0, Arg1, Arg2)); }
  void test_case_1() { int Arg0 = 5; int Arr1[] = {0, 1, 2, 3}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[0]))); int Arr2[] = {1, 2, 3, 4}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 4; verify_case(1, Arg3, count(Arg0, Arg1, Arg2)); }
  void test_case_2() { int Arg0 = 4; int Arr1[] = {0, 3}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[0]))); int Arr2[] = {1, 1}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 4; verify_case(2, Arg3, count(Arg0, Arg1, Arg2)); }

  // END CUT HERE

};

// BEGIN CUT HERE
int main(){
  AcyclicOrientation ___test;
  ___test.run_test(-1);
  getch() ;
  return 0;
}
// END CUT HERE
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:308759次
    • 积分:12395
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论