4,平面图与着色
4.1,平面图
定义:把G画在平面上,使得除了顶点外,任意两条边不交叉,称G可嵌入平面,G为平面图。
性质:一个平面图G把平面分成若干连通片,这些连通片称为G的区域,或G的一个面。其中有界区域称为内部面或有界面;无界区域称为外部面或无界面。G的面组成的集合用Φ表示。
边界:每个面所有边构成的回路;
面的度数(次数):面的边界的长度,即为d(R)
极大平面图
定义:若在任意两个不相邻 的结点vi,vj之间加入边{vi,vj},就会破坏图的平面性,则称G是极大平面图。

定理:
- 有限平面图中,所有面的次数之和等于边数的2倍。
- 欧拉公式:任意连通平面图G,若有n个结点,m条边和r个面,则欧拉公式n-m+r=2成立。
欧拉公式的推论1:

比如:证明 K 5 K_5 K5是非平面图。
因为,由推论1知: K 5 K_5 K5有5个顶点10条边,而3*5-6=9<10;不满足条件。

欧拉公式的推论2:

证明略(提示:G的每一个面的度数至少为4)。
比如:证明 K 3 , 3 K_{3,3} K3,3是非平面图。
因为K33中没有长度为3的圈,每个面的度数至少为4。所以9 >2*6-4,不满足条件。

判定:
定义:
2度顶点内扩充:在图G的边上插入一个2度顶点,使一条边分成两条边,称将图在2度顶点内扩充;
2度顶点内收缩:去掉一个图的2度顶点,使关联它们的两条边合并成一条边,称将图G在2度顶点内收缩。
同胚:两个图G1和图G2,若图G1和图G2同构,或者通过多次在2度点内扩充或者收缩,
它们能够同构,则称图G1和图G2是同胚的。

4.2,对偶图
任何一个平面图都有一个与之对应的平面图,称之为对偶图。


4.3,图的着色


4.4,图的色多项式
定义:图G的不同K-可着色的数目称为图G的色多项式。记作f(G,k).

对三阶完全图K3而言,有f(K3,k)=k(k-1)(k-2)。
一般地,有f(Kp,k)=k(k-1)(k-2)…(k-p+1)。

也就是说,对于一个色多项式可以按照多一条边+少一个顶点的方式进行拆分,直到所得子图都是完全图为止。

根据色多项式求色素数:
f ( G , k ) = f ( K n 1 , k ) + f ( K n 2 , k ) + . . . + f ( K n r , k ) f(G,k)=f(K_{n1},k)+f(K_{n2},k)+...+f(K_{nr},k) f(G,k)=f(Kn1,k)+f(Kn2,k)+...+f(Knr,k),其中,λ(G)=min{n1,n2,…,nr}。