poj 3352 Road Construction(双联通)

原创 2015年11月21日 19:11:33

Road Construction
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10191   Accepted: 5061

Description

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10

Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2

Output for Sample Input 2
0

Source


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>

typedef long long ll;
#define eps 1e-8

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define bug printf("hi"\n)
using namespace std;
#define INF 0x3f3f3f3f
#define N 1005

int low[N],dfn[N],num;
int head[N],degree[N],belong[N];
int n,m,all;
int Time;
bool instack[N];
stack<int>s;

struct stud{
	int to,ne;
}e[N*2];

inline void add(int u,int v)
{
    e[num].to=v;
	e[num].ne=head[u];
	head[u]=num++;
}

void dfs(int u,int fa)
{
	low[u]=dfn[u]=++Time;
	instack[u]=true;
    s.push(u);
	for(int i=head[u];i!=-1;i=e[i].ne)
	{
	   if(fa==(i^1)) continue;
	   int to=e[i].to;
	   if(dfn[to]==-1)
	   {
		   dfs(to,i);
		   low[u]=min(low[u],low[to]);
	   }
	   else if(instack[to])
		   low[u]=min(low[to],low[u]);
	}
	if(low[u]==dfn[u])
	{
		int temp;
		++all;
		do{
			temp=s.top();
			s.pop();
			belong[temp]=all;
			instack[temp]=false;
		}while(temp!=u);
	}
}

int main()
{
	int i,j,ca;
	while(~scanf("%d%d",&n,&m))
	{
		memset(head,-1,sizeof(head));
        num=0;
        int u,v;
        while(m--)
		{
			scanf("%d%d",&u,&v);
			{
				add(u,v);
				add(v,u);
			}
		}
        memset(dfn,-1,sizeof(dfn));
		memset(low,-1,sizeof(low));
		while(!s.empty()) s.pop();
		all=0;
		Time=0;
		memset(instack,false,sizeof(instack));
		for(i=1;i<=n;i++)
			if(dfn[i]==-1)
			{
				dfs(i,-1);
			}
		memset(degree,0,sizeof(degree));
		for(i=1;i<=n;i++)
			for(int j=head[i];j!=-1;j=e[j].ne)
			{
				int to=e[j].to;
				if(belong[to]!=belong[i])
					degree[belong[to]]++;
			}
		int ans=0;
		for(i=1;i<=all;i++)
			if(degree[i]==1) ans++;
		printf("%d\n",(ans+1)/2);
	}
	return 0;
}






版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 3352|Road Construction|边双联通分量|Tarjan

POJ 3352 Road Construction至少加几条边使原无向图边双联通。 tarjan求出边双联通分量后缩点成一棵树。 那么一棵树要实现边双联通显然是叶节点间连边,所以边数是 ⌈le...

【POJ 3352】 Road Construction(边联通分量入门)

【POJ 3352】 Road Construction(边联通分量入门) Road Construction Time Limit: 2000MS   Memory Limit: 65...

POJ3352Road Construction(边的双连通+强连通缩点)

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8673 ...

POJ 3352 Road Construction 使得无向图边变双连通图

点击打开链接 Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8168  ...

poj 3352 Road Construction 双连通图

大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,任意2个旅游景点之间有路径连通(注意不一定是直接连通)。而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施...
  • wr132
  • wr132
  • 2015年12月05日 12:52
  • 355

poj3352 Road Construction (双连通)

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8735 ...

poj3352Road Construction 边双连通+伪缩点

统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边, 就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。...

poj 3352 Road Construction(双连通图Tarjan求至少增加的边数)

大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,任意2个旅游景点之间有路径连通(注意不一定是直接连通)。而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施...

poj3352——Road Construction——————【加边为边-双连通图】

/**    解题思路:找到图的边-双连通分量,将分量缩成点后,求出缩点后的dfs树的各个结点的度,求出叶子结点(度为1)个数,根据定理计算需要加的最少边即可。 */ 题目大意:          ...

POJ 3352--Road Construction【无向图增加最少的边成为边双连通图 && tarjan求ebc && 缩点构造缩点树】

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9986   Accepted...
  • hpuhjh
  • hpuhjh
  • 2015年08月18日 16:40
  • 527
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 3352 Road Construction(双联通)
举报原因:
原因补充:

(最多只允许输入30个字)