程序员编程艺术:第二章、字符串是否包含问题

标签: 编程stringdictionary算法扩展
94313人阅读 评论(251) 收藏 举报
分类:

                        程序员编程艺术:第二章、字符串是否包含问题


作者:July,yansha,caopengcs。
时间:二零一一年四月二十三日。
致谢:老梦,nossiac,Hession,Oliver,luuillu,啊菜,雨翔,及微软100题实现小组所有成员。


题目描述:
假设这有一个各种字母组成的字符串A,和另外一个字符串B,字符串里B的字母数相对少一些。什么方法能最快的查出所有小字符串B里的字母在大字符串A里都有?

比如,如果是下面两个字符串:
String 1: ABCDEFGHLMNOPQRS
String 2: DCGSRQPO
答案是true,所有在string2里的字母string1也都有。
 
如果是下面两个字符串:  
String 1: ABCDEFGHLMNOPQRS  
String 2: DCGSRQPZ  
答案是false,因为第二个字符串里的Z字母不在第一个字符串里。

    点评:
    1、题目描述虽长,但题意简单明了,就是给定一长一短的俩个字符串A,B,假设A长B短,现在,要你判断B是否包含在字符串A中,即B?(-A。

    2、题意虽简单,但实现起来并不轻松,且当如果面试官步步紧逼,一个一个否决你能想到的方法,要你给出更好、最好的方案时,你恐怕就要伤不少脑筋了。

    ok,在继续往下阅读之前,您最好先想个几分钟,看你能想到的最好方案是什么,是否与本文最后实现的方法一致。


1.1、O(n*m)的轮询方法

判断string2中的字符是否在string1中?:
String 1: ABCDEFGHLMNOPQRS
String 2: DCGSRQPO

    判断一个字符串是否在另一个字符串中,最直观也是最简单的思路是,针对第二个字符串string2中每一个字符,一一与第一个字符串string1中每个字符依次轮询比较,看它是否在第一个字符串string1中。

    代码可如下编写:

//copyright@啊菜 2011
//updated@July&Image丶时光 2013
#include <iostream>  
#include <string>
using namespace std;  

int CompareString(string LongString,string ShortString)  
{  
	int i,j;
	for (i=0; i<ShortString.length(); i++)  
	{  
		for (j=0; j<LongString.length(); j++)  //O(n*m)  
		{  
			if (LongString[j] == ShortString[i])  //一一比较  
			{  
				break;  
			}  

		}  
		if (j==LongString.length())  
		{  
			cout << "false" << endl;  
			return 0;  
		}  
	}  
	cout << "true" << endl;  
	return 1;  
}  

int main()   
{   
	string LongString="ABCDEFGHLMNOPQRS";  
	string ShortString="DCGSRQPO";  
	CompareString(LongString,ShortString);  
	return 0;  
}    

    假设n是字符串string1的长度,m是字符串string2的长度,那么此算法,需要O(n*m)次操作,拿上面的例子来说,最坏的情况下将会有16*8 = 128次操作。显然,时间开销太大,我们需要找到一种更好的办法。

 

1.2、O(mlogm)+O(nlogn)+O(m+n)的排序方法
    一个稍微好一点的方案是先对这两个字符串的字母进行排序,然后同时对两个字串依次轮询。两个字串的排序需要(常规情况)O(m log m) + O(n log n)次操作,之后的线性扫描需要O(m+n)次操作

    同样拿上面的字串做例子,将会需要16*4 + 8*3 = 88,再加上对两个字串线性扫描的16 + 8 = 24的操作。(随着字串长度的增长,你会发现这个算法的效果会越来越好)

    关于采用何种排序方法,我们采用最常用的快速排序,下面的快速排序的代码用的是以前写的,比较好懂,并且,我执意不用库函数的qsort代码。唯一的问题是,此前写的代码是针对整数进行排序的,不过,难不倒我们,稍微改一下参数,即可,如下:

    

1.3、O(n+m)的计数排序方法

    此方案与上述思路相比,就是在排序的时候采用线性时间的计数排序方法,排序O(n+m),线性扫描O(n+m),总计时间复杂度为:O(n+m)+O(n+m)=O(n+m)

    代码如下:

 不过上述方法,空间复杂度为O(n+m),即消耗了一定的空间。有没有在线性时间,且空间复杂度较小的方案列?

 

第二节、寻求线性时间的解法
2.1、O(n+m)的hashtable的方法
    上述方案中,较好的方法是先对字符串进行排序,然后再线性扫描,总的时间复杂度已经优化到了:O(m+n),貌似到了极限,还有没有更好的办法列?

    我们可以对短字串进行轮询(此思路的叙述可能与网上的一些叙述有出入,因为我们最好是应该把短的先存储,那样,会降低题目的时间复杂度),把其中的每个字母都放入一个Hashtable里(我们始终设m为短字符串的长度,那么此项操作成本是O(m)或8次操作)。然后轮询长字符串,在Hashtable里查询短字符串的每个字符,看能否找到。如果找不到,说明没有匹配成功,轮询长字符串将消耗掉16次操作,这样两项操作加起来一共只有8+16=24次。
    当然,理想情况是如果长字串的前缀就为短字串,只需消耗8次操作,这样总共只需8+8=16次。

    或如梦想天窗所说: 我之前用散列表做过一次,算法如下:
 1、hash[26],先全部清零,然后扫描短的字符串,若有相应的置1,
 2、计算hash[26]中1的个数,记为m
 3、扫描长字符串的每个字符a;若原来hash[a] == 1 ,则修改hash[a] = 0,并将m减1;若hash[a] == 0,则不做处理
 4、若m == 0 or 扫描结束,退出循环。

    代码实现,也不难,如下:

 

2.2、O(n+m)的数组存储方法

    有两个字符串short_str和long_str。
    第一步:你标记short_str中有哪些字符,在store数组中标记为true。(store数组起一个映射的作用,如果有A,则将第1个单元标记true,如果有B,则将第2个单元标记true,... 如果有Z, 则将第26个单元标记true)
    第二步:遍历long_str,如果long_str中的字符包括short_str中的字符则将store数组中对应位置标记为false。(如果有A,则将第1个单元标记false,如果有B,则将第2个单元标记false,... 如果有Z, 则将第26个单元标记false),如果没有,则不作处理。
    第三步:此后,遍历store数组,如果所有的元素都是false,也就说明store_str中字符都包含在long_str内,输出true。否则,输出false。

    举个简单的例子好了,如abcd,abcdefg两个字符串,
    1、先遍历短字符串abcd,在store数组中相对应的abcd的位置上的单元元素置为true,
    2、然后遍历abcdefg,在store数组中相应的abcd位置上,发现已经有了abcd,则前4个的单元元素都置为false,当我们已经遍历了4个元素,等于了短字符串abcd的4个数目,所以,满足条件,退出。
    (不然,继续遍历的话,我们会发现efg在store数组中没有元素,不作处理。最后,自然,就会发现store数组中的元素单元都是false的。)
    3、遍历store数组,发现所有的元素都已被置为false,所以程序输出true。

    其实,这个思路和上一节中,O(n+m)的hashtable的方法代码,原理是完全一致的,且本质上都采用的数组存储(hash表也是一个数组),但我并不认为此思路多此一举,所以仍然贴出来。ok,代码如下:

 

第三节、O(n)到O(n+m)的素数方法

    我想问的是,还有更好的方案么?
    你可能会这么想:O(n+m)是你能得到的最好的结果了,至少要对每个字母至少访问一次才能完成这项操作,而上一节最后的俩个方案是刚好是对每个字母只访问一次。

    ok,下面给出一个更好的方案:
    假设我们有一个一定个数的字母组成字串,我给每个字母分配一个素数,从2开始,往后类推。这样A将会是2,B将会是3,C将会是5,等等。现在我遍历第一个字串,把每个字母代表的素数相乘。你最终会得到一个很大的整数,对吧?
    然后——轮询第二个字符串,用每个字母除它。如果除的结果有余数,这说明有不匹配的字母。如果整个过程中没有余数,你应该知道它是第一个字串恰好的子集了。

思路总结如下:
1.定义最小的26个素数分别与字符'A'到'Z'对应。
2.遍历长字符串,求得每个字符对应素数的乘积。
3.遍历短字符串,判断乘积能否被短字符串中的字符对应的素数整除。
4.输出结果。

    至此,如上所述,上述算法的时间复杂度为O(m+n),时间复杂度最好的情况为O(n)(遍历短的字符串的第一个数,与长字符串素数的乘积相除,即出现余数,便可退出程序,返回false),n为长字串的长度,空间复杂度为O(1)。如你所见,我们已经优化到了最好的程度。

    不过,正如原文中所述:“现在我想告诉你 —— Guy的方案在算法上并不能说就比我的好。而且在实际操作中,你很可能仍会使用我的方案,因为它更通用,无需跟麻烦的大型数字打交道。但从”巧妙水平“上讲,Guy提供的是一种更、更、更有趣的方案。”

    ok,如果你有更好的思路,欢迎在本文的评论中给出,非常感谢。

     

上述程序待改进的地方:
1.只考虑大写字符,如果考虑小写字符和数组的话,素数数组需要更多素数
2.没有考虑重复的字符,可以加入判断重复字符的辅助数组。

大整数除法的代码,后续公布下载地址。

    说明:此次的判断字符串是否包含问题,来自一位外国网友提供的gofish、google面试题,这个题目出自此篇文章:http://www.aqee.net/2011/04/11/google-interviewing-story/,文章记录了整个面试的过程,比较有趣,值得一读。

    扩展:正如网友安逸所说:其实这个问题还可以转换为:a和b两个字符串,求b串包含a串的最小长度。包含指的就是b的字串包含a中每个字符。


updated:我们假设字母都由大写字母组成……,我们先对小字符串预处理,可以得到B里包含哪些字符,这里可以用位运算,或者用bool数组。位运算简单些,用一个int中的26bit表示其是否在B中出现即可。

//copyright@ caopengcs 2013
bool AcontainsB(char *A,char *B) {  
	int have = 0;  
	while (*B) {  
		have |= 1 << (*(B++) - 'A');   // 把A..Z对应为0..26  
	}  
	while (*A) {  
		if ((have & (1 << (*(A++) - 'A'))) == 0) {  
			return false;  
		}  
	}  
	return true;  
}  
    本文编程艺术第二章github地址:https://github.com/julycoding/The-Art-Of-Programming_by-July/blob/master/ebook/zh/02.0.md,欢迎fork,欢迎贡献。完。

8
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13305279次
    • 积分:50271
    • 等级:
    • 排名:第132名
    • 原创:159篇
    • 转载:0篇
    • 译文:6篇
    • 评论:13895条
    博主简介
    July,于2010年10月11日开始在CSDN上写博(搜索:“结构之法”,进入本博客),博客专注面试、算法、机器学习。2015年正式创业,七月在线创始人兼CEO,公司官网:七月在线(https://www.julyedu.com/),微博@研究者July。新书《编程之法》15年10月14日起正式上市。JulyEdu c/c++/算法Q群:123531805。July,2016/5月。
    July和他朋友们的创业平台
    我的微博
    July新书《编程之法》上市
    博客专栏
    最新评论