
图像处理
文章平均质量分 70
viewcode
first level:code
展开
-
OpenCV中图像及子图像ROI之间的复制
opencv的图像及子图像复制1.x版本与2.x版本的使用方式有很大不同。1.x版本采用cvCopy或cvSetImageROI, cvCopy, cvResetImageROI的方式实现。而2.x版本以后,图像用Mat来表示。图像的复制方法比较多,例如src.clone()src.copyTo(dst)src.copyTo(dst, mask)dst与src类原创 2012-08-02 16:11:36 · 35893 阅读 · 1 评论 -
从backproject到meanshift:各自的作用
分割、识别、跟踪是图像处理中的重要应用。 一般算法步骤是检测点、线、面(区域),分割,然后根据人的先验知识进行识别。而meanshift算法是利用颜色直方图(颜色空间),形成的目标特征,去搜索和跟踪。backproject和meanshift算法在opencv中都有实现,而且网上的论述一抓一大把,这里就不在赘述。在理解其理论意义后,重点关注一下其作用和应用场景。1. backproje原创 2014-07-09 17:35:58 · 3009 阅读 · 4 评论 -
反向投影backproject的直观理解
1. 什么是backproject?2. backproject 有什么用?3. 例证1. 什么是backproject?反向投影:opencv docs给出的概念是“一种记录给定图像中的像素点如何适应直方图模型像素分布的方式。简单的讲, 所谓反向投影就是首先计算某一特征的直方图模型,然后使用模型去寻找图像中存在的该特征。”第一句讲的是backproject原创 2012-11-22 18:26:44 · 25733 阅读 · 1 评论 -
车载全景可视系统surroundview
技术方案有哪些?全景可视系统,也又称全景泊车等等,市面已经有产品出现,各家的方案看起来又不一样。对全景,飞思卡尔freescale、富士通fujitsu拥有比较完整的解决方案,但也有其他公司推出自己的产品,但芯片都基本选用飞思卡尔或富士通的。从用户角度来说,全景有以下几个分类:图像是否有拼接? 支持哪些视角功能(广角或俯视)?是否有3D模型?0. 几个摄像头?目原创 2014-04-03 11:49:24 · 13967 阅读 · 1 评论 -
前方车辆检测的常用方法
常见问题:1. 选取那种分辨率来计算?2. 如何选取特征点?3. 如何跟踪?4. 如何计算距离?5. 如何计算前车速度?6. 如何区分多个车辆?原创 2014-04-16 17:54:02 · 13430 阅读 · 0 评论 -
学习SIFT算法过程中的释疑
介绍SIFT算法的文章David G. Lowe, "Distinctive image features from scale-invariant keypoints,"International Journal of Computer Vision, 60, 2 (2004), pp. 91-110文章一开始就给出了sift特征的关键步骤:1. 利用尺度空间,检原创 2013-01-31 10:42:14 · 7557 阅读 · 0 评论 -
图像处理中消除相机透镜畸变和视角变换
一般的针孔相机模型如下:三维坐标点经过透视投影变换,转换到一个图像平面坐标点。而相机透镜还存在一定的畸变,包括横向畸变和切向畸变。 因此,针孔相机模型又被扩展为以下模型:首先,世界坐标被转换为相机坐标,由X,Y,Z到x,y,z;然后,归一化,z=1处,x,y的投影坐标x`,y`;接下来,对投影坐标,进行畸变处理;最后,由相机坐标转换到图像坐标。原创 2012-09-11 14:53:53 · 32681 阅读 · 4 评论 -
霍夫变换直线检测houghlines及opencv的实现分析
导读:1. houghlines的算法思想2. houghlines实现需要考虑的要素3. houghlines的opencv实现,代码分析4. houghlines的效率分析,改进1. houghlines的算法思想检测直线,houghlines标准算法,不考虑线段,不检测线段端点。在直角坐标系和极坐标系的对应关系,点、直线在两个坐标系中是对偶关系。即直角原创 2012-10-19 18:15:54 · 33373 阅读 · 13 评论 -
由RGB到HSV颜色空间的理解
1. RGB模型2. HSV模型3. 如何理解RGB与HSV的联系4. HSV在图像处理中的应用5. opencv中RGB-->HSV实现在图像处理中,最常用的颜色空间是RGB模型,常用于颜色显示和图像处理,三维坐标的模型形式,非常容易被理解。而HSV模型,是针对用户观感的一种颜色模型,侧重于色彩表示,什么颜色、深浅如何、明暗如何。第一次接触HSV,书本里首先抛出的原创 2012-11-20 17:37:08 · 144115 阅读 · 7 评论 -
车道检测与跟踪
车道检测的目标:1. 车道形状,包括宽度、曲率等几何参数2. 车辆在车道中的位置,包括横向偏移量,车辆与道路的夹角(偏航角)车道检测与跟踪一般分为以下几个部分:1. 车辆、道路、相机模型2. 道路特征提取3. 道路参数计算,如曲率,4. 车道跟踪车辆、道路、相机模型在现代道路设计中,道路有比较固定的设计模型,因此,对于高速公路等道路类型,车道的几原创 2012-09-13 16:12:30 · 15422 阅读 · 3 评论 -
kalmanfilter在目标跟踪中的应用
运动目标跟踪的目的是确定各运动目标的运动轨迹。所以,要确定当前检测的目标与以往检测到的目标(受跟踪的动态目标)的关系。1. 目标检测、分割2. 目标特征匹配3. 目标的特征估计与校正运动目标的匹配特征信息一般包括:1. 位置2. 大小,size3. 形状,如高宽比4. 颜色,(已知的试验中,不太可靠)5. 边缘特征目标是动态的,所以,以上原创 2012-09-06 16:03:18 · 4463 阅读 · 2 评论 -
OCR学习及tesseract的一些测试
最近接触OCR,先收集一些资料,包括成熟软件、SDK、流行算法。1. 一个对现有OCR软件及SDK的总结,比较全面,包括支持平台、编程语言、支持字体语言、输出格式、相关链接等http://en.wikipedia.org/wiki/List_of_optical_character_recognition_software以此为索引,比较、选择你想要的OCR SDK。原创 2012-07-25 18:20:03 · 28311 阅读 · 1 评论 -
tophat在图像分割中的应用
tophat在图像分割中对检测暗处明亮的细节是效果比较好的,特别是有均匀宽度或大小的目标,反过来,对于明亮处的暗细节应用black_hat就可以了。tophat结构元素的大小及形态是检测的关键,太大一般会引入干扰或噪声,太小无法全部突出细节。对于更细小的背景干扰(小于目标),可采用灰度形态open或close消除,使背景更均匀,利用tophat的运用。我平时喜欢采用的二值化原创 2012-07-24 09:35:54 · 5876 阅读 · 0 评论 -
OpenCV中获取不同形状的结构元素getStructuringElement
图像处理经常要用到形态学操作,其中首先要获取 结构元素。包括结构元素的大小及形状。自定义一个结构元素kernel,要声明一个Mat,然后对Mat的元素赋值;这种方法灵活但略显复杂。OpenCV提供了一个函数getStructuringElement,可以获取常用的结构元素的形状:矩形(包括线形)、椭圆(包括圆形)及十字形。MORPH_RECT, MORPH_ELLIPS原创 2012-08-06 17:44:27 · 42789 阅读 · 0 评论 -
学习opencv中KalmanFilter应用
为什么要卡曼滤波?简单来说,因为噪声影响,测量不准确,应用卡曼滤波来尽量去除噪声影响。应用场景:当预估的模型可知,如恒定、线性或多项式等。 有固定的模型后,才会有状态转移方程,kalmanfilter应用才方便。opencv中kalmanfilter保留的接口很简单,只有三个:init, predict及correct。init仅仅是初始化卡原创 2012-07-20 12:33:30 · 6460 阅读 · 1 评论 -
opencv中canny算法理解
opencv canny的应用详解参见:http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.htmlcanny算法的基本步骤:1. 获取x,y的梯度2. 非最大值抑制3. 边缘跟踪第一个步骤很好理解,获取x方向、y方向的梯度。ope原创 2012-07-23 17:05:21 · 5748 阅读 · 0 评论