1. 问题描述:
给定多个自变量、一个因变量以及代表它们之间关系的一些训练样本,如何来确定它们的关系?
2. 数学描述
建模:目的就是求这个因变量关于这多个自变量的函数。而这个函数能够比较精确的表示这个因变量和这多个自变量之间的关系。
3. 问题深入
举个例子我们有代表两个自变量x1,x2和一个因变量y之间的关系的一些训练样本(比如(x1=0,x2=1,y=0)等)。现在我们来求y关于x1、x2的函数就可能会出现各种各样的情况。
比如 y = a*x1+b*x2; y =a*Sqrt(x1)+b*Sqrt(x2); y = a*exp(x1)+b*exp(-x2); y=x1*x2;各种各样的情况都很可能。
但是我们现在只有这些训练样本,我们怎么来确定它们的模型呢和各自模型相应的参数呢。很难判断。
从这里可以看出其实线性回归的局限性很大。它只是简单的建立一个y=a*x1+b*x2的关系的一个模型,然后来拟合求得a、b的值。就试图来表示y和x1、x2之间的所有关系,显然不是很准确的。如果当前y=x1*x2

本文介绍了非线性回归问题,包括线性回归的局限性和如何选择适合的模型。当线性模型不适用时,文章探讨了采用非线性模型,如通过降维(PCA、ICA)和核函数转换将非线性问题线性化。重点讲述了核函数的作用,如何避免维数灾难,并列举了常见的核函数类型。核函数在支持向量回归和模式识别中的应用也被提及。
最低0.47元/天 解锁文章
5万+

被折叠的 条评论
为什么被折叠?



