基于陀螺仪和加速度计的快速准确的摔倒检测(一)

本文介绍了一种结合加速度计和陀螺仪的摔倒检测系统,通过识别static postures和dynamic transitions提高准确性。系统能有效检测站立、弯腰、坐下和躺下等姿势,减少假阳性与假阴性。对比仅使用加速度计的方法,该系统降低了计算需求并提升了实时响应。同时,文中讨论了其他研究的局限性,如Bourke的阈值算法会误报坐下和跳起为摔倒。传感器选择包括TEMPO3.0,包含三轴加速度计和陀螺仪,以更精确地测量角速度和加速度变化。
摘要由CSDN通过智能技术生成

本文主要讲解一种利用加速度计和陀螺仪的准确快速摔倒检测系统。把人体的行为分成两类:static postures 和 dynamic transitions. 该系统可以识别四种static postures: standing, bending, sitting, and lying. 其中在这些static postures之间的运动看做是dynamic transitions. linear acceleration and angular velocity are measured to determine whether motion transitions are intentional. If the transition before a lying posture is not intentional, a fall event is detected.该文章的算法,降低了假阳性和假阴性,改善了摔倒检测的准确性。同时也降低了计算量和提高了实时响应。

前人的工作中大多只用了加速度计进行信息的获取和摔倒检测。对于一些特殊的情况,无法准确检测,如快速坐下。且准确率不高。为了改善人体行动识别准确率,一些人编写了复杂的推断算法例如隐马尔科夫模型(HMM)去分析加速度信息。(paper: R.K.Gabti, "SATIRE: A software architecture for smart attire"), 这种方法的缺点是1、使用了过多的计算资源。2、不能满足实时性要求。3、摔倒活动模式较困难获取用于训练这个系统(fall activity patterns are particularly difficult to obtain for training such systems)。-------注:此种方法结合《基于时间序列的HMM摔倒检测》论文一起看,关于摔倒预测的分析等

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值