优化方法-爬山法

转载 2015年11月18日 17:56:49

爬山法是一种局部最优的算法(本质上属于贪心法),也属于启发式的方法,它一般只能得到局部最优解。当优化的问题的局部最优解即为全局最优解时可以用此方法来求最优问题,否则可以考虑多次爬山法或者其他的方法如遗传算法和模拟退火法。

一、原理

爬山法一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、代码

import random  
 def evaluate(x1, x2, x3):
    return x1+x2-x3 
 if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]), 
           random.randint(x_range[1][0], x_range[1][1]), 
           random.randint(x_range[2][0], x_range[2][1])] 
     while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol] 
         for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break 
     print 'best sol:', current_best_value, best_sol
某次运行结果如下: 
 [[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2] 
可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法


转自:http://www.jb51.net/article/49390.htm

相关文章推荐

【最优化方法】穷举法 vs. 爬山法 vs. 模拟退火算法 vs. 遗传算法 vs. 蚁群算法

一、 穷举法   列举所有可能,然后一个个去,得到最优的结果。如图一,需要从A点一直走到G点,才能知道,F是最高的(最优解)。这种算法得到的最优解肯定是最好的,但也是效率最低的。穷举法虽...

从猴子爬山到最优化方法

  • 2014-03-02 23:42
  • 1.02MB
  • 下载

集体智慧编程——优化搜索算法:爬山法,模拟退火算法,遗传算法-Python实现

在优化问题中,有两个关键点 代价函数:确定问题的形式和规模之后,根据不同的问题,选择要优化的目标。如本文涉及的两个问题中,一个优化目标是使得航班选择最优,共计12个航班,要使得总的票价最少且每个人的等...

八皇后问题-爬山法

爬山法mppt

  • 2015-03-12 12:22
  • 16KB
  • 下载

优化算法 - 爬山,模拟退火算法

一. 爬山算法 ( Hill Climbing )      介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个...
  • Hou_Rj
  • Hou_Rj
  • 2011-10-15 17:15
  • 1625

爬山演算法

簡介 爬山演算法 HC (Hill-Climbing Algorithm) 是單粒子型算法中最簡單的一種,實作相當容易,且執行速度很快。因此,經常被用來作為各種最佳化演算法的比較基準。但是,由於...

[人工智能实践]爬山法,分支界限法求解皇后问题

皇后问题通常方法是回溯,但效率较低。 另外一种方法是使用随机算法,利用分支界限法的思想作为启发函数。10000以内规模的问题效率不错。 具体方法如下: 用一维数组存储每一行所放皇后所在的列数,要...

争取几句话描述一下爬山法,模拟退火,遗传算法

简单的介绍下这三个算法

爬山法(Hill Climbing)的设计与PHP实现

爬山法是指经过评价当前的问题状态后,限于条件,不是去缩小,而是去增加这一状态与目标状态的差异,经过迂回前进,最终达到解决问题的总目标。就如同爬山一样,为了到达山顶,有时不得不先上矮山顶,然后再下来--...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)