深度学习之基础模型-mobileNet

MobileNet是一种使用depthwise separable convolutions构建轻量级深度神经网络的基础模型。通过对比传统卷积,MobileNet在保持精度的同时,显著减少了计算量和模型参数。文章详细介绍了模型结构、不同宽度和分辨率下的实验结果,以及与其他流行模型的比较,展示其在效率与性能上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MobileNets are based on streamlined architecture that uses depthwise separable convolutions to build light weight deep nueral network.


这里写图片描述

思想

  • 基于depthwise separable convolution(来源于FactorizedNet)来实现
    • depth-wise convolution:每一层分别作卷积
    • point-wise convolution :1x1卷积,把各个层连接起来


这里写图片描述

注:左侧图片来自FactorizedNet,右侧来则mobileNet

作者讨论了,采用separable depthwise convolution与传统的卷积的计算量进行了比较:

Standard Convolution Filters:

DKDkMNDGDG

Depthwise Concolution Filters:

DKDKMDGDG+MNDG
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值