一路(16)相随,一起(17)前行

2016年对于楼主来说,是艰难的一年,也是幸运的一年,我想把我的故事说给你听!

迈入IT行业已经快一年了,但是实际上真正练习的时间只有仅仅的四个多月,之前的专业是电子方面,并没有深入的了解过IT行业,更别提自己写代码。大学毕业后,工作了一年,不是很顺心,每天的工作不累,但是重复,每天就是重复着过着日子,越来越觉得枯燥,反感,人生如果这样平平淡淡的走下去,个人觉得这一生很失败。于是乎,选择了社会的潮流——计算机。

2016年3月2号,真正的辞职转行,学习的方向选择了WEB前端,开始一步步的学习,由最简单的HTML开始学起,然后CSS,再后来就是js,包括一些主流的js框架,要知道“隔行如隔山”这句话真的没错,转行人的思维是没有本专业的那么灵活,刚开始,完全想不懂每一段代码都有什么用呢?为什么要这么写呢?当时就是死记硬背,但这种方法,各位程序猿,攻城狮都懂得!两个字:白费!由于要学习的东西很多,一直就是这种方法支撑着我,中间没有想过有什么好的方法。当时也没有什么好的信息来源渠道,而且都不懂博客,各类的网址,只是加了几个相关的前端群,但是群里的聊天内容很复杂,不只是讨论技术。

学习了三个多月之后,开始试着找工作,估计大家也能想到结果是什么?很少有面试,面试通不过,这就是现状。当时的心情很奔溃。找了一个多月没找到后,都开始试着面试其他的不相关岗位,找工作的那段时间心情极其的复杂,心里也定不下来,每天都是五味杂陈,有时面试回来就开始背面试题,白天面试官问的问题不懂就赶紧回来找资料弄明白,怕下次再问到这样的问题不懂。迷迷糊糊,最后找了一个比较满意的工作,但是重点来了,不对口!美其名曰:网络营销开发,实际上是偏后端的开发,包括数据库的开发以及JAVA的开发,对于小白用户来说这无疑是个霹雳,幸好楼主是个女汉纸,不怕困难(其实,当时找工作找的太苦了)。管他三七二十一,继续学习!迈入工作才发现什么都不懂,自己练习的和工作中用到的是有差别的呀!不管怎样,选择了就想坚持下去。我一直鼓励自己的一句话就是“多年之后你会感谢今天努力的自己”,也是这句话一直支撑着自己。我只是希望多年之后回想起以往的每一个今天,我可以骄傲的和自己说“每一个今天我都没有浪费”。

对于2016年的总结就是充实。完成了对MySQL、JAVA、数据分析的学习,虽说可以跟大牛比起来还差很多,但是和自己的每一个昨天相比,我每天都有进步,这是令自己满意的地方。

这是我的第一篇博客,我想和大家分享一下。以后也会定期的分享一些干货,希望能和大家共同进步。也希望能用我的故事去激励每一个小白用户,一个转行人的自述。

感谢一路(16)有你相随,希望一起(17)继续前行!


基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值