《人工智能狂潮》读后感——什么是人工智能?(一)

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了无监督学习Autoencoder的原理知识,然后用MNIST手写数字案例进行对比实验及聚类分析。本篇文章将分享《人工智能狂潮》书籍内容,包括人工智能的应用和什么是人工智能,结合作者的理解分享人工智能原理及基础知识,希望对您有所帮助!

本专栏主要结合作者之前的博客、AI经验和相关视频及书籍论文介绍,后面随着深入会讲解更多的Python人工智能案例及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~作者作为人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。写了这么多年博客,尝试第一个付费专栏,但更多博客尤其基础性文章,还是会继续免费分享,但该专栏也会用心撰写,望对得起读者,共勉!

代码下载地址:https://github.com/eastmountyxz/AI-for-TensorFlow

  • 10
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
好的,以下是我为你准备的PPT: # 豆瓣电影Top250数据分析及可视化 ## 目录 1. 数据来源和概况 2. 分析Top250电影的类型、国家和年份分布 3. 探究Top250电影的评分分布和影响因素 4. 了解Top250电影的票房情况 5. 结论和建议 ## 数据来源和概况 - 数据来源:豆瓣电影API和豆瓣电影Top250页面 - 数据范围:Top250电影,包括电影名称、类型、国家、年份、评分、评价人数、简介等信息 - 数据总量:250条记录 ## 分析Top250电影的类型、国家和年份分布 ### 电影类型 - 前五大电影类型:剧情、爱情、喜剧、犯罪、动作 - 剧情类电影占比最高,达到65.6% - 其他类型电影占比相对较低 ### 电影国家 - 前五大电影国家:美国、英国、日本、法国、意大利 - 美国电影占比最高,达到62.8% - 其他国家电影占比相对较低 ### 电影年份 - 电影年份分布较为均匀,最早的电影为1921年上映的《黄金狂潮》,最新的电影为2019年上映的《小丑》 ## 探究Top250电影的评分分布和影响因素 ### 评分分布 - Top250电影的评分范围在8.0-9.7之间 - 评分最高的电影是《肖申克的救赎》,评分为9.7分 ### 影响评分的因素 - 电影类型:剧情、犯罪、战争等类型的电影评分较高 - 导演:导演评分较高的电影评分也相对较高 - 演员:演员评分较高的电影评分也相对较高 ## 了解Top250电影的票房情况 - 由于豆瓣电影没有票房数据,我们无法直接得知Top250电影的票房情况 - 但我们可以通过电影的票房排名和票房专业网站的数据来了解Top250电影的票房情况 ## 结论和建议 - Top250电影的类型、国家和年份分布较为均匀 - 评分最高的电影是《肖申克的救赎》,评分为9.7分 - 电影类型、导演和演员等因素对电影的评分有一定的影响 - 了解Top250电影的票房情况可以帮助我们更好地了解电影市场 建议豆瓣电影可以在其网站上增加票房数据,以便更好地满足用户的需求。 ## 谢谢观看!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值