Xianfeng轻量级Java中间件平台:功能管理

功能管理:从功能类型来看,不属于用户使用的功能,而属于系统维护使用的功能,因为对于用户来说,是不可见的。功能管理的作用是定义一套规则,用来处理权限等业务,比如常见的菜单权限控制、按钮权限控制等情景


在设计方面,为了简化功能数据模型,涉及到几个概念

模块(Module):功能集合,用于给整个系统的功能按照子系统的结构分模块,比如“系统管理“等

功能(Function):实际的业务功能单元,对应一个完整的业务相关的所有业务操作的集合,比如“流水号管理”等

操作(Operation):一个完整业务所包含的所有操作类型,比如“新增”、“修改”、“删除”等

它们之间的关系简单表示如下图:



功能树结构如下图:


根节点是所有模块的虚拟父节点,因此不能通过右键菜单进行”修改“和”删除“等其他操作


模块的操作如下图:


单击之后,右侧会出现编辑模块的页面


功能的操作如下图所示:


单击之后,右侧会出现编辑功能的页面


此外,还可以通过功能的右键菜单”操作管理“来维护功能的操作列表,如下图所示:



无论是模块、还是功能,都可以通过右键菜单”刷新“来重新加载所有的子节点,实现方式是先删除所有的子节点,然后再重新查询所有子节点的数据


由于模块、功能的数据都没有保存在一张数据库表里,因此在使用ligerTree控件的时候,需要将模块和功能的数据进行组装,符合ligerTree树的数据格式要求


经过一段时间的开发,已经有一部分功能陆续完成,待一期开发计划完成之后,将会开放所有源代码,敬请期待~


### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值