利用opencv绘制 灰度直方图 RGB直方图 HSV直方图 直方图均衡化

转载 2015年07月08日 15:09:08

利用opencv绘制 灰度直方图 RGB直方图 HSV直方图 直方图均衡化

灰度直方图介绍:

http://hi.baidu.com/wen_sift/blog/item/83fd56ca3e6b1b36b600c887.html

灰度直方图均衡化:

http://hi.baidu.com/wen_sift/blog/item/b808fd0d9f67392b6b60fb54.html

利用OpenCV计算并绘制灰度直方图  :

复制代码
#include <cv.h>
#include <highgui.h>
#pragma comment( lib, "cv.lib" )
#pragma comment( lib, "cxcore.lib" )
#pragma comment( lib, "highgui.lib" )
int main()
{
         IplImage* src=cvLoadImage("lena.jpg",0);
         int width=src->width;
         int height=src->height;
         int step=src->widthStep;
         uchar* data=(uchar *)src->imageData;
         int hist[256]={0};
         for(int i=0;i<height;i++)
         {
                   for(int j=0;j<width;j++)
                   {
                            hist[data[i*step+j]]++;
                   }
         }
         int max=0;
         for(i=0;i<256;i++)
         {
                   if(hist[i]>max)
                   {
                            max=hist[i];
                   }
         }
         IplImage* dst=cvCreateImage(cvSize(400,300),8,3);
         cvSet(dst,cvScalarAll(255),0);
         double bin_width=(double)dst->width/256;
         double bin_unith=(double)dst->height/max;
         for(i=0;i<256;i++)
         {
                   CvPoint p0=cvPoint(i*bin_width,dst->height);
                   CvPoint p1=cvPoint((i+1)*bin_width,dst->height-hist[i]*bin_unith);
                   cvRectangle(dst,p0,p1,cvScalar(0,255),-1,8,0);
         }
         cvNamedWindow("src",1);
         cvShowImage("src",src);
         cvNamedWindow("dst",1);
         cvShowImage("dst",dst);
         cvWaitKey(0);
         cvDestroyAllWindows();
         cvReleaseImage(&src);
         cvReleaseImage(&dst);
         return 0;
}
复制代码

 

利用opencv现有函数:
复制代码
#include <cv.h>
#include <highgui.h>
#pragma comment( lib, "cv.lib" )
#pragma comment( lib, "cxcore.lib" )
#pragma comment( lib, "highgui.lib" )
int main()
{
         IplImage* src=cvLoadImage("lena.jpg",0);
         int size=256;
         float range[]={0,255};
         float* ranges[]={range};
         CvHistogram* hist=cvCreateHist(1,&size,CV_HIST_ARRAY,ranges,1);
         cvCalcHist(&src,hist,0,NULL);
         float max=0;
         cvGetMinMaxHistValue(hist,NULL,&max,NULL,NULL);
         IplImage* dst=cvCreateImage(cvSize(400,300),8,3);
         cvSet(dst,cvScalarAll(255),0);
         double bin_width=(double)dst->width/size;
         double bin_unith=(double)dst->height/max;
         for(int i=0;i<size;i++)
         {
                   CvPoint p0=cvPoint(i*bin_width,dst->height);
                   CvPoint p1=cvPoint((i+1)*bin_width,dst->height-cvGetReal1D(hist->bins,i)*bin_unith);
                   cvRectangle(dst,p0,p1,cvScalar(0,255),-1,8,0);
         }
         cvNamedWindow("src",1);
         cvShowImage("src",src);
         cvNamedWindow("dst",1);
         cvShowImage("dst",dst);
         cvWaitKey(0);
         cvDestroyAllWindows();
         cvReleaseImage(&src);
         cvReleaseImage(&dst);
         return 0;
}
复制代码

 

通过复用上面的代码。可以得到彩色图像各通道的直方图,RGB直方图代码如下:

复制代码
#include <cv.h>

#include <highgui.h>

#pragma comment( lib, "cv.lib" )

#pragma comment( lib, "cxcore.lib" )

#pragma comment( lib, "highgui.lib" )

int main()

{

         IplImage* src=cvLoadImage("lena.jpg",1);

         IplImage* r=cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); 

         IplImage* g=cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); 

         IplImage* b=cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); 

         cvSplit(src,b,g,r,NULL); 

         IplImage* gray = cvCreateImage(cvGetSize(src),8,1);

         cvCvtColor(src,gray,CV_BGR2GRAY);

         int size=256;

         float range[]={0,255};

         float* ranges[]={range};

         

         CvHistogram* r_hist = cvCreateHist(1,&size,CV_HIST_ARRAY,ranges,1);

         CvHistogram* g_hist = cvCreateHist(1,&size,CV_HIST_ARRAY,ranges,1);

         CvHistogram* b_hist = cvCreateHist(1,&size,CV_HIST_ARRAY,ranges,1);

         CvHistogram* hist   = cvCreateHist(1,&size,CV_HIST_ARRAY,ranges,1);

         cvCalcHist(&r,r_hist,0,NULL);

         IplImage* r_dst=cvCreateImage(cvSize(400,300),8,3);

         cvSet(r_dst,cvScalarAll(255),0);

         float r_max=0;

         cvGetMinMaxHistValue(r_hist,NULL,&r_max,NULL,NULL);

         double r_bin_width=(double)r_dst->width/size;

         double r_bin_unith=(double)r_dst->height/r_max;

         for(int i=0;i<size;i++)

         {

                   CvPoint p0=cvPoint(i*r_bin_width,r_dst->height);

                   CvPoint p1=cvPoint((i+1)*r_bin_width,r_dst->height-cvGetReal1D(r_hist->bins,i)*r_bin_unith);

                   cvRectangle(r_dst,p0,p1,cvScalar(255,0,0),-1,8,0);

         }

         cvCalcHist(&g,g_hist,0,NULL);

         IplImage* g_dst=cvCreateImage(cvSize(400,300),8,3);

         cvSet(g_dst,cvScalarAll(255),0);

         float g_max=0;

         cvGetMinMaxHistValue(g_hist,NULL,&g_max,NULL,NULL);

         double g_bin_width=(double)g_dst->width/size;

         double g_bin_unith=(double)g_dst->height/g_max;

         for(i=0;i<size;i++)

         {

                   CvPoint p0=cvPoint(i*g_bin_width,g_dst->height);

                   CvPoint p1=cvPoint((i+1)*g_bin_width,g_dst->height-cvGetReal1D(g_hist->bins,i)*g_bin_unith);

                   cvRectangle(g_dst,p0,p1,cvScalar(0,255,0),-1,8,0);

         }

         cvCalcHist(&b,b_hist,0,NULL);

         IplImage* b_dst=cvCreateImage(cvSize(400,300),8,3);

         cvSet(b_dst,cvScalarAll(255),0);

         float b_max=0;

         cvGetMinMaxHistValue(b_hist,NULL,&b_max,NULL,NULL);

         double b_bin_width=(double)b_dst->width/size;

         double b_bin_unith=(double)b_dst->height/b_max;

         for(i=0;i<size;i++)

         {

                   CvPoint p0=cvPoint(i*b_bin_width,b_dst->height);

                   CvPoint p1=cvPoint((i+1)*b_bin_width,b_dst->height-cvGetReal1D(b_hist->bins,i)*b_bin_unith);

                   cvRectangle(b_dst,p0,p1,cvScalar(0,0,255),-1,8,0);

         }

         cvCalcHist(&gray,hist,0,NULL);

         IplImage* gray_dst=cvCreateImage(cvSize(400,300),8,3);

         cvSet(gray_dst,cvScalarAll(255),0);

         float max=0;

         cvGetMinMaxHistValue(hist,NULL,&max,NULL,NULL);

         double bin_width=(double)gray_dst->width/size;

         double bin_unith=(double)gray_dst->height/max;

         for(i=0;i<size;i++)

         {

                   CvPoint p0=cvPoint(i*bin_width,gray_dst->height);

                   CvPoint p1=cvPoint((i+1)*bin_width,gray_dst->height-cvGetReal1D(hist->bins,i)*bin_unith);

                   cvRectangle(gray_dst,p0,p1,cvScalar(0),-1,8,0);

         }

         IplImage* dst=cvCreateImage(cvSize(800,600),8,3);

         cvSetZero(dst);

         CvRect rect = cvRect(0, 0, 400, 300); 

         cvSetImageROI(dst, rect); 

         cvCopy(r_dst, dst); 

         rect = cvRect(400, 0, 400, 300);

         cvSetImageROI(dst, rect); 

         cvCopy(g_dst, dst);

         rect = cvRect(0, 300, 400, 300);

         cvSetImageROI(dst, rect); 

         cvCopy(b_dst, dst);

         rect = cvRect(400, 300, 400, 300);

         cvSetImageROI(dst, rect); 

         cvCopy(gray_dst, dst);

         cvResetImageROI(dst);

         cvNamedWindow("src",1);

         cvShowImage("src",src);

         cvNamedWindow("dst",1);

         cvShowImage("dst",dst);

         cvSaveImage("dst.jpg",dst);

         cvWaitKey(0); 

         cvDestroyAllWindows();

         cvReleaseImage(&src);

         cvReleaseImage(&dst);

         cvReleaseImage(&r);

         cvReleaseImage(&g);

         cvReleaseImage(&b);

         cvReleaseImage(&gray);

         cvReleaseImage(&r_dst);

         cvReleaseImage(&g_dst);

         cvReleaseImage(&b_dst);

         cvReleaseImage(&gray_dst);

         return 0;

}
复制代码

 


HSV通道直方图如下:
复制代码
// Color_2DHistogram.cpp : 定义控制台应用程序的入口点。
//

#pragma comment(lib, "cv210.lib")
#pragma comment(lib, "cxcore210.lib")
#pragma comment(lib, "highgui210.lib")
#pragma comment(lib, "cvaux210.lib")

#include <cv.h>
#include <highgui.h>
#include <iostream>
using namespace std;

int main( int argc, char** argv )
{
 IplImage * src;
     if(argc<2)
{
        printf("Usage: main <image-file-name>\n\7");
        exit(0);
      }
      // 载入图像  
      src=cvLoadImage(argv[1],-1);
      if(!src)
{
           printf("Could not load image file: %s\n",argv[1]);
        exit(0);
      }

    IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );  //第一个为size,第二个为位深度(8为256度),第三个通道数   
    IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 );  
    IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 );  
    IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 );  
    IplImage* planes[] = { h_plane, s_plane,v_plane };  
   
    //** H 分量划分为16个等级,S分量划分为8个等级 */   
    int h_bins =16 , s_bins =8, v_bins = 8;  
    int hist_size[] = {h_bins, s_bins, v_bins};  
   
    //** H 分量的变化范围 */   
    float h_ranges[] = { 0, 180 };   
   
    //** S 分量的变化范围*/   
    float s_ranges[] = { 0, 255 };  
    float v_ranges[] = { 0, 255 };  
  
    float* ranges[] = { h_ranges, s_ranges,v_ranges};  
   
    //** 输入图像转换到HSV颜色空间 */   
    cvCvtColor( src, hsv, CV_BGR2HSV );  
    cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );  
   
    //** 创建直方图,二维, 每个维度上均分 */   
    CvHistogram * hist = cvCreateHist( 3, hist_size, CV_HIST_ARRAY, ranges, 1 );  
    //** 根据H,S两个平面数据统计直方图 */   
    cvCalcHist( planes, hist, 0, 0 );  
   
    //** 获取直方图统计的最大值,用于动态显示直方图 */   
    float max_value;  
    cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 );  
   
   
    //** 设置直方图显示图像 */   
    int height = 100;  
    int width = (h_bins*s_bins*v_bins*5);  
    IplImage* hist_img = cvCreateImage( cvSize(width,height), 8, 3 );  
    cvZero( hist_img );  
   
    //** 用来进行HSV到RGB颜色转换的临时单位图像 */   
    IplImage * hsv_color = cvCreateImage(cvSize(1,1),8,3);  
    IplImage * rgb_color = cvCreateImage(cvSize(1,1),8,3);  
    int bin_w = width / (h_bins * s_bins);  
    for(int h = 0; h < h_bins; h++)  
    {  
        for(int s = 0; s < s_bins; s++)  
        {  
            for(int v = 0; v < v_bins; v++)  
            {  
            int i = h*s_bins + s*v_bins + v;  
            /** 获得直方图中的统计次数,计算显示在图像中的高度 */  
            float bin_val = cvQueryHistValue_3D( hist, h, s,v );  
            int intensity = cvRound(bin_val*height/max_value);  
   
            /** 获得当前直方图代表的颜色,转换成RGB用于绘制 */  
            cvSet2D(hsv_color,0,0,cvScalar(h*180.f / h_bins,s*255.f/s_bins,v*255.f/v_bins,0));  
            cvCvtColor(hsv_color,rgb_color,CV_HSV2BGR);  
            CvScalar color = cvGet2D(rgb_color,0,0);  
   
            cvRectangle( hist_img, cvPoint(i*bin_w,height),  
                cvPoint((i+1)*bin_w,height - intensity),  
                color, -1, 8, 0 );  
            }  
        }  
    }  
  
    cvNamedWindow( "Source", 1 );  
    cvShowImage( "Source", src );  
    cvNamedWindow( "H-S-V Histogram",1);  
    cvShowImage( "H-S-V Histogram", hist_img );
    cvWaitKey(0);  

    cvReleaseImage(&src);
    cvReleaseImage(&hist_img);
    cvDestroyWindow("Source");
    cvDestroyWindow("H-S-V Histogram");
    return 0;
}  
复制代码

 

直方图均衡化代码:

复制代码
// Gray_Hist.cpp : 定义控制台应用程序的入口点。
//
#include <iostream>
#include <stdio.h>
#include <cv.h>
#include <highgui.h>
#include <math.h>

using namespace std;
using namespace cv;

int main(int argc, char **argv)
{
    IplImage* src=cvLoadImage(argv[1],CV_LOAD_IMAGE_GRAYSCALE);
    //"C:\\Users\\hellmonky\\Desktop\\LeastSquaresMethod\\Debug\\1.bmp"
    cvNamedWindow("原始图像",1);
    cvShowImage("原始图像",src);

    int width=src->width;
    int height=src->height;
    int sum = width*height;

    int step=src->widthStep;
    uchar* data=(uchar *)src->imageData;
    int hist[256]={0};
    int CalHist[256] = {0};
    int CH[256] = {0};
    int max1 = 0;
    int max2=0;

    //////////////////////////////////////////////////////////////////////////
    //计算输入图像的灰度分布
    //////////////////////////////////////////////////////////////////////////
    for(int i=0;i<height;i++)
    {
        for(int j=0;j<width;j++)
        {
            hist[data[i*step+j]]++;
        }
    }
    for(int i=0;i<256;i++)
    {
        if(hist[i]>max1)
        {
            max1=hist[i];
        }
    }
    for (int i=0;i<256;i++)
    {
        for (int j=0;j<=i;j++)
        {
            CalHist[i] += (int)(255* (float)hist[j]/sum );
        }
    }
    IplImage* dst1=cvCreateImage(cvSize(400,300),8,1);
    cvSet(dst1,cvScalarAll(255),0);
    double bin_width=(double)dst1->width/256;//建立比例因子
    double bin_unith=(double)dst1->height/max1;
    for(int i=0;i<256;i++)
    {
        CvPoint p0=cvPoint(i*bin_width,dst1->height);
        CvPoint p1=cvPoint((i+1)*bin_width,dst1->height-hist[i]*bin_unith);
        cvRectangle(dst1,p0,p1,cvScalar(1),-1,8,0);
    }

    //////////////////////////////////////////////////////////////////////////
    //对原始图像进行重新计算
    //////////////////////////////////////////////////////////////////////////
    for(int i=0;i<height;i++)
    {
        for(int j=0;j<width;j++)
        {
            data[i*step+j] = CalHist[data[i*step+j]];
        }
    }

    //////////////////////////////////////////////////////////////////////////
    //计算变换以后的图像的灰度分布
    //////////////////////////////////////////////////////////////////////////
    for(int i=0;i<height;i++)
    {
        for(int j=0;j<width;j++)
        {
            CH[data[i*step+j]]++;
        }
    }
    for(int i=0;i<256;i++)
    {  
        if(CH[i]>max2)
        {  
            max2=CH[i];  
        }  
    }
    IplImage* you=cvCreateImage(cvSize(400,300),8,1);
    cvSet(you,cvScalarAll(255),0);
    double binwidth=(double)you->width/256;//建立比例因子
    double binunith=(double)you->height/max2;
    for(int i=0;i<256;i++)
    {
        CvPoint p0=cvPoint(i*binwidth,you->height);
        CvPoint p1=cvPoint((i+1)*binwidth,you->height-CH[i]*binunith);
        cvRectangle(you,p0,p1,cvScalar(1),-1,8,0);
    }

    
    cvNamedWindow("原始图像灰度分布",1);
    cvNamedWindow("直方图均衡化图像",1);
    cvNamedWindow("均衡化后直方图",1);

    
    cvShowImage("原始图像灰度分布",dst1);
    cvShowImage("直方图均衡化图像",src);
    cvShowImage("均衡化后直方图",you);

    waitKey(0);
    cvDestroyWindow("原始图像");
    cvDestroyWindow("原始图像灰度分布");
    cvDestroyWindow("直方图均衡化图像");
    cvDestroyWindow("均衡化后直方图");
    return 0;
}
复制代码

 

 opencv里也自带直方图均衡化代码:
复制代码
#include "cv.h"
#include "highgui.h"

#define HDIM    256    // bin of HIST, default = 256

int main( int argc, char** argv ) 
{
    IplImage *src = 0, *dst = 0;
    CvHistogram *hist = 0;
    
    int n = HDIM;     
    double nn[HDIM];
    uchar T[HDIM];
    CvMat *T_mat;
    
    int x;
    int sum = 0; // sum of pixels of the source image 图像中象素点的总和
    double val = 0;
    
    if( argc != 2 || (src=cvLoadImage(argv[1], 0)) == NULL)  // force to gray image
        return -1;
    
    cvNamedWindow( "source", 1 );
    cvNamedWindow( "result", 1 );
    
    // 计算直方图
    hist = cvCreateHist( 1, &n, CV_HIST_ARRAY, 0, 1 );  
    cvCalcHist( &src, hist, 0, 0 ); 
    
    // Create Accumulative Distribute Function of histgram
    val = 0;
    for ( x = 0; x < n; x++)
    {
        val = val + cvGetReal1D (hist->bins, x);
        nn[x] = val;
    }

    // 归一化直方图
    sum = src->height * src->width;
    for( x = 0; x < n; x++ )
    {
        T[x] = (uchar) (255 * nn[x] / sum); // range is [0,255]
    }

    // Using look-up table to perform intensity transform for source image 
    dst = cvCloneImage( src );
    T_mat = cvCreateMatHeader( 1, 256, CV_8UC1 );
    cvSetData( T_mat, T, 0 );    
    // 直接调用内部函数完成 look-up-table 的过程
    cvLUT( src, dst, T_mat ); 

    cvShowImage( "source", src );
    cvShowImage( "result", dst );
    cvWaitKey(0);

    cvDestroyWindow("source");
    cvDestroyWindow("result");
    cvReleaseImage( &src );
    cvReleaseImage( &dst );
    cvReleaseHist ( &hist );
    
    return 0;
}
复制代码

 

 图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图拉伸进行图像增强的代码如下:

复制代码
// Contrast_Enhance.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h" 
#include "cv.h"
#include "highgui.h"

int ImageStretchByHistogram(IplImage *src,IplImage *dst); 

int _tmain(int argc, _TCHAR* argv[])
{
    IplImage * pImg;    
    pImg=cvLoadImage("F:/test_photo/12.jpg",-1); 

//创建一个灰度图像
    IplImage* GrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
    IplImage* dstGrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
    cvCvtColor(pImg, GrayImage, CV_BGR2GRAY);
    ImageStretchByHistogram(GrayImage,dstGrayImage); 

  cvNamedWindow( "dstGrayImage", 1 ); //创建窗口
        cvNamedWindow( "GrayImage", 1 ); //创建窗口
        cvShowImage( "dstGrayImage", dstGrayImage ); //显示图像
        cvShowImage( "GrayImage", GrayImage ); //显示图像
        cvWaitKey(0); //等待按键 

  cvDestroyWindow( "dstGrayImage" );//销毁窗口
        cvDestroyWindow( "GrayImage" );//销毁窗口
        cvReleaseImage( &pImg ); //释放图像
        cvReleaseImage( &GrayImage ); //释放图像
        cvReleaseImage( &dstGrayImage ); //释放图像 

  return 0;
} 

int ImageStretchByHistogram(IplImage *src,IplImage *dst)
/*************************************************
  Function:        
  Description:     因为摄像头图像质量差,需要根据直方图进行图像增强,
                   将图像灰度的域值拉伸到0-255
  Calls:          
  Called By:      
  Input:           单通道灰度图像                  
  Output:          同样大小的单通道灰度图像 
  Return:          
  Others:           http://www.xiaozhou.net/ReadNews.asp?NewsID=771
  DATE:               2007-1-5
*************************************************/
{
    //p[]存放图像各个灰度级的出现概率;
    //p1[]存放各个灰度级之前的概率和,用于直方图变换;
    //num[]存放图象各个灰度级出现的次数; 

    assert(src->width==dst->width);
    float p[256],p1[256],num[256];
    //清空三个数组
    memset(p,0,sizeof(p));
    memset(p1,0,sizeof(p1));
    memset(num,0,sizeof(num)); 

    int height=src->height;
    int width=src->width;
    long wMulh = height * width; 

    //求存放图象各个灰度级出现的次数
    // to do use openmp
      for(int x=0;x<width;x++)   {
         for(int y=0;y<height;y++)    {
            uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
            num[v]++;
        }
    } 

    //求存放图像各个灰度级的出现概率
    for(int i=0;i<256;i++)
    {
        p[i]=num[i]/wMulh;
    } 

    //求存放各个灰度级之前的概率和
    for(int i=0;i<256;i++)
    {
        for(int k=0;k<=i;k++)
            p1[i]+=p[k];
    } 

    //直方图变换
    // to do use openmp
    for(int x=0;x<width;x++)  {
         for(int y=0;y<height;y++)
     {
            uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
            ((uchar*)(dst->imageData + dst->widthStep*y))[x]= p1[v]*255+0.5;            
        }
    } 

    return 0; 

} 

相关文章推荐

【OpenCV】绘制直方图

申明,本文非笔者原创,原文转载自:http://blog.csdn.net/xiaowei_cqu/article/details/8833799...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

HSV颜色直方图

颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性...

利用OpenCV画HSV的3D直方图

此代码是根据opencv附带例子修改而成。 [cpp] view plaincopy #include    #include    #incl...

【OpenCV】显示HSV模型中H分量的颜色直方图

显示颜色直方图

【OpenCV】HSV颜色识别-HSV基本颜色分量范围

一般对颜色空间的图像进行有效处理都是在HSV空间进行的,然后对于基本色中对应的HSV分量需要给定一个严格的范围,下面是通过实验计算的模糊范围(准确的范围在网上都没有给出)。 H:  0 — 180 S...

图像相似度计算之直方图方法OpenCV实现

图像相似度计算之直方图方法OpenCV实现!

OpenCV中颜色分布直方图及其应用

1、图像直方图直方图是对数据的集合 统计,并将统计结果分布于一系列预定义的 bins 中。这里的 数据 不仅仅指的是颜色灰度值 , 统计数据可能是任何能有效描述图像的特征(如梯度、方向等)。特别地,当...

【opencv】Mat数据直方图计算函数

Mat calcHistogramsImage(Mat src, int &valMax) { int nChannel = src.channels(); valMax = 0; if (n...

给定A, B两个整数,不使用除法和取模运算,求A/B的商和余数

给定A, B两个整数,不使用除法和取模运算,求A/B的商和余数。 1.   最基本的算法是,从小到大遍历: for (i = 2 to A -1)          if (i * B > A)...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:利用opencv绘制 灰度直方图 RGB直方图 HSV直方图 直方图均衡化
举报原因:
原因补充:

(最多只允许输入30个字)