论文阅读-《Mask R-CNN》

本文介绍了Mask R-CNN,它在Faster R-CNN基础上增加了一个分支预测对象掩模,实现实例分割。ROI Align层解决了特征映射量化导致的像素对齐问题,提高了性能。实验表明,Mask R-CNN在COCO实例分割和检测任务中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

arxiv 2017/3/20 KaiMing He & Rbg

1.Contribution

  • Propose a general instance segmentation method called Mask-RCNN, which extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition
  • performance: 5帧/秒 state-of-art in instance segmentation

2.Introduction

  1. Mask RCNN是在faster rcnn的基础上,加上了一个mask branch,对于经过RPN得到的一个proposal,假设经过ROI pooling之后得到m*m固定大小的feature map,一方面通过detection得到这个proposal的类别和坐标回归。另一方面通过mask branch得到对这个ROI的分割结果。假设数据集一共有K个类,那么mask的输出就是K个channel的binary score map。mask branch对于每一个类独立预测这个类的binary mask,而不是所有的类一起预测一个score map。这样,就把segmentation和classification分开来了。classification专门由detection部分的cls去做,mask branch只需要预测前景就行。

  2. 训练的时候在instance segmentation数据集上面,既有mask label也有detection label。定义loss是一个multi-task loss = loss(cls) + loss(reg) + loss(mask)。假设gt class label是k,那么mask

Mask RCNN 是基于Kaiming 之前的工作 FPN (Feature Pyramid Network) 很形象地说就是用FPN产生的检测结果, 后面加了一个分割的网络. 文章中用到了 Top-Down + Bottom-Up 最近很流行的多层网络, 因为最开始Faster-RCNN只是在最后一层上面检测, 很容易丢掉小目标物体, 并且对细节遮挡也很不敏感. 最近的趋势就是结合多层 特征, 答主孔涛就很早发现了这个insight, 做出了HyperNet 并中了CVPR roal!!!作者:Oh233 链接:https://www.zhihu.com/question/57403701/answer/153060743 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 Mask R-CNN 这个结果确实很强,但要同时注意它主要是加上了许多(都是很有用的)engineering techniques 。 比如说 anchor 从 12 增加到了15个,图像 size 从600变成了800,还有ROI batch size变到了512,从FPN那篇paper来看,这些 better practice 会有对性能十分明显的提升 (table 3 baseline: AP=26.3 -> 31.6)。而我们组16年的coco分割竞赛冠军 ,Fully Convolutional Instance-aware Semantic Segmentation (FCIS)的代码昨晚终于开源了。限于计算资源,我们并没有加上这些改进。这些改进应该是比较 general 的,也会适用于 FCIS。欢迎大家试用一波。FCIS 提供了一种简单高效的框架去解决 instance segmentation 的问题。跟之前 COCO 2015 的冠军 MNC 相比,它的主要不同在于 mask estimation 和 detection 是共同做的,而不是先估计 mask 再做 detection。在 FCIS 中 detection/mask estimation 之间通过 inside/outside score map 互相影响,利用了这两个紧密相连 task 之间的共性。现在 release 版本基于支持多卡训练的MXNet,msracver/FCIS。实际上大概今年一月份我们就已经写出了外面可以使用的Caffe版本,但是当时官方 Caffe 只支持单卡做复杂任务的训练,对于COCO这种大规模数据集来说用单卡训练的话一下子几周的时间就过去了。考虑到大家用起来会非常蛋疼,最后还是决定没有release这个版本。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值