ML—线性回归系列(三)—岭回归

华电北风吹
日期:2015/11/25

本文主要对岭回归(ridge regression)进行总结。
本系列的第一篇中线性回归的转化为如下的无约束优化问题
minθmi=1(y(i)θTx(i))2(0-1)
其中, x(i)Rn×1 表示每个样本都是n维向量, y(i) 表示样本 x(i) 对应的标签, θRn×1 表示参数向量。与之等价的矩阵形式为
minθ||XθY||22(0-2)
其中 X=(x(1),x(2),...,x(m))TRm×n,Y=(y(1),y(2),...,y(m))T .

一、岭回归
岭回归的目标表达式为
minmi=1(y(i)θTx(i))2+λ||θ||22(1-1)
岭回归出现原因:为了防止特征之间线性相关。具体参考本系列第一篇线性回归的矩阵求解部分。

二、岭回归的矩阵求解
可以使用与最小二乘矩阵解法类似的矩阵求导来求解岭回归问题
S(θ)=mi=1(y(i)θTx(i))2+λ||θ||2
ddθS(θ)=ddθS(θ)=2XT(YXθ)+2λθ=0
XTY=(XTXλI)θ
解得:
θ=(XTXλI)1XTY(2-1)

三、岭回归参数 θ 的SVD几何解释
同本系列第一篇文章对于线性回归的SVD解释,
假设 XRm×n 的SVD分解为
X=UΣVT(3-1)
其中 U=(u1,u2,...,un)Rm×n , Σ=diag(σ1,σ2,...,σn)Rn×n , V=(v1,v2,...,vn)Rn×n v1,v2,...,vn 是原始样本空间的一组标准正交基, u1,u2,...,un 分别是原始样本在这组基下的正交标准化坐标。
XTX=(UΣVT)TUΣVT=VΣUTUΣVT=VΣ2VT(3-2)
对于线性回归 θlr=(XTX)1XTY 可得 θlr=ni=11σiviuTiY
对于岭回归
θridge=(XTXλI)1XTY=V(Σ2+λI)1ΣUTY=ni=1σiσ2i+λviuTiY(3-3)
λ 定性分析可以发现,岭回归求解的 θ 相对于线性回归来说要更加偏向于向零收缩,并且随着 λ 增加收缩幅度更大(如下图),例如当 λ=0 时,岭回归和线性回归求解得到的 λ 是相同的,当 λ= θ=0
这里写图片描述
其中 df(λ)=ni=1σiσ2i+λ

四、参考博客
ML—线性回归系列(一)—线性回
http://blog.csdn.net/zhangzhengyi03539/article/details/50035265

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值