// DigitalDifferentialAnalyserLine.cpp : 定义控制台应用程序的入口点。
#include "stdafx.h"
#include<stdlib.h>
#include <GL/glut.h>
/* initialization: */
void myinit(void)
{
/* attributes */
glClearColor(1.0, 1.0, 1.0, 0.0); /* white background */
glColor3f(1.0, 0.0, 0.0); /* draw in red */
/* set up viewing: */
/* 500 x 500 window with origin lower left */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 500.0, 0.0, 500.0);
glMatrixMode(GL_MODELVIEW);
}
void dda_line(int xa,int ya,int xb,int yb)
{
GLfloat delta_x,delta_y,x,y;
int dx,dy,steps;
dx=xb-xa;
dy=yb-ya;
if(abs(dx)>abs(dy))
steps=abs(dx);
else
steps=abs(dy);
delta_x=(GLfloat)dx/(GLfloat)steps;
delta_y=(GLfloat)dy/(GLfloat)steps;
x=xa;
y=ya;
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);
glVertex3f(x,y,0);
for(int k=1;k<=steps;k++)
{
x+=delta_x;
y+=delta_y;
glBegin(GL_POINTS);
glVertex3f(x,y,0);
glEnd();
}
}
/* the display callback: */
void display( void )
{
glClear(GL_COLOR_BUFFER_BIT); /*clear the window */
/*----------------------------------------*/
/* viewport stuff */
/*----------------------------------------*/
/* set up a viewport in the screen window */
/* args to glViewport are left, bottom, width, height */
glViewport(0, 0, 500, 500);
/* NB: default viewport has same coords as in myinit, */
/* so this could be omitted: */
dda_line(200,200,2000,2000);
/* and flush that buffer to the screen */
glFlush();
}
int main(int argc, char** argv)
{
/* Standard GLUT initialization */
glutInit(&argc,argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); /* default, not needed */
glutInitWindowSize(500,500); /* 500 x 500 pixel window */
glutInitWindowPosition(0,0); /* place window top left on display */
glutCreateWindow("Digital Differential Analyser Line"); /* window title */
glutDisplayFunc(display); /* display callback invoked when window opened */
myinit(); /* set attributes */
glutMainLoop(); /* enter event loop */
}
算法介绍部分就直接来自:http://course.cug.edu.cn/cugFirst/computer_graphics/class/course/2-1-1-a.htm
感觉挺麻烦的自己写的话有好多数学公式,但代码是自己的啊!
设(x1,y1)和(x2,y2)分别为所求直线的起点和终点坐标,由直线的微分方程得
可通过计算由x方向的增量△x引起y的改变来生成直线:
也可通过计算由y方向的增量△y引起x的改变来生成直线:
式(2-2)至(2-5)是递推的。
选定x2-x1和y2-y1中较大者作为步进方向(假设x2-x1较大),取该方向上的增量为一个象素单位(△x=1),然后利用式(2-1)计算另一个方向的增量(△y=△x·m=m)。通过递推公式(2-2)至(2-5),把每次计算出的(xi+1,yi+1)经取整后送到显示器输出,则得到扫描转换后的直线。
之所以取x2-x1和y2-y1中较大者作为步进方向,是考虑沿着线段分布的象素应均匀,这在下图中可看出。
另外,算法实现中还应注意直线的生成方向,以决定Δx及Δy是取正值还是负值。

1、已知直线的两端点坐标:(x1,y1),(x2,y2)
2、已知画线的颜色:color
3、计算两个方向的变化量:dx=x2-x1
dy=y2-y1
4、求出两个方向最大变化量的绝对值:
steps=max(|dx|,|dy|)
5、计算两个方向的增量(考虑了生成方向):
xin=dx/steps
yin=dy/steps
6、设置初始象素坐标:x=x1,y=y1
7、用循环实现直线的绘制:
for(i=1;i<=steps;i++)
{ putpixel(x,y,color);/*在(x,y)处,以color色画点*/
x=x+xin;
y=y+yin;
}
