HDU 6053 TrickGCD

HDU 6053 TrickGCD

原题连接:
http://acm.hdu.edu.cn/showproblem.php?pid=6053
(对于不了解,莫比乌斯反演的同学不需要纠结。直接用结论就好了)

莫比乌斯反演公式

若对于 定义域 为正整数,值域为复数子集 的函数 f

定义它的和函数

F(n)=d|nf(d)=d|nf(nd)

则对于任意正整数n:

f(n)=d|nμ(d)F(nd)=d|nμ(nd)F(d)

同时 。也有一种无穷形式的反演公式:

F(n)=n|df(d)

这里,d取n的倍数。 所以这是一个无穷和式子。有:

f(n)=n|dμ(dn)F(d)

反演的形式很多。都是很巧妙的(可以参阅组合数学,有更一般的反演与容斥)。
上面的的莫比乌斯反演的定义是很强的。- -!一切算术函数

————————————————————————————————————————————————

对于这一题。 gcd(Bl,Bl+1,...Br)>=2,l<=r,l,r[1,n]
设: gcd(B)=n 的B数列个数为 f(n)

F(n)=n|dnf(d)

由 第二个莫比乌斯反演得:

f(1)=d>=1μ(d)F(d)

这里 F(n) 就是 gcd=n 的倍数的所有方案数量。

虽然 得到的式子是一个无穷和式子。
但。当 d>min(A1,A2,A3,...An) 时, F(d)=0
我么可以通过预处理与快速幂快速计算出F函数
对于 F(k) 那么任意B都应该含有k这个因子。
那么 Bi 可选择的方案数就是 Aik
那么乘法原理得:

F(k)=i=1nAik

m=min(A1,A2,..An)
h=max(A1,A2,...An)
暴力算所有的 F 1 m 的时间就是O(nm)
cnt[u] A A[i]<=u的元素个数。
对于 A 中满足Aik=t的所有的元素个数为:

cnt[(t+1)k1]cnt[tk1]

那么 A 中与k的商等于 t 的元素对F(k)的贡献为:

tcnt[(t+1)k1]cnt[tk1]

那么计算 F(k) 的复杂度为 O(hklog(cnt[(t+1)k1]cnt[tk1]))
计算出 1 m F(k) 所用时间为:
O(hmk=1log(cnt)k)=O(hlogmlogh)<O(105log2(105))
利用反演公式:
f(1)=d>=1μ(d)F(d)
计算出 f(1)

answer=F(1)f(1)

#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <set>
#include <math.h>
#define MAXN 100005
using namespace std;

typedef long long LL;

const LL mod=1e9+7;

int cnt[MAXN];
LL f[MAXN];
const int N=MAXN;
int mu[N];
void getMu()
{
    for(int i=1;i<=N;i++)
    {
        int target=i==1?1:0;
        int delta=target-mu[i];
        mu[i]=delta;
        for(int j=i+i;j<=N;j+=i)
        {
            mu[j]+=delta;
        }
    }
}

LL pow(LL a,int b)
{
    LL tmp=1;
    while(b)
    {
        if(b&1)
            tmp=tmp*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return tmp;
}

int main ()
{
    int T,ca=1;
    getMu();
    scanf("%d",&T);
    while(T--)
    {
        int A;
        LL ans=0;
        memset(cnt,0,sizeof cnt);
        int n,m=MAXN,ma=-1;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&A);
            m=min(A,m);
            ma=max(A,ma);
            cnt[A]++;
        }
        for(int i=1;i<=ma;i++) cnt[i]+=cnt[i-1];
        for(int k=1;k<=m;k++)
        {
            f[k]=1;
            for(int l=-1,j=k-1,t=1; ;t++)
            {
                j+=k;
                l+=k;
                if(j>ma)j=ma;
                f[k]*=pow((LL)t,cnt[j]-cnt[l]);
                f[k]%=mod;
                if(j==ma)break;
            }
        }
        for(int i=1;i<=m;i++)
            ans=(ans+f[i]*mu[i]+mod)%mod;
        printf("Case #%d: %lld\n",ca++,(f[1]-ans+mod)%mod);
    }
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值