梯度裁剪是一种在非常深度的网络(通常是循环神经网络)中用于防止梯度爆炸(exploding gradient)的技术。
执行梯度裁剪的方法有很多,但常见的一种是当参数矢量的 L2 范数(L2 norm)超过一个特定阈值时对参数矢量的梯
度进行标准化,这个特定阈值根据函数:新梯度=梯度 * 阈值 / 梯度L2范数
new_gradients = gradients * threshold / l2_norm(gradients)。</
本文介绍了防止深度网络中梯度爆炸的策略——梯度裁剪,特别是关注Caffe框架的实现。通过在梯度L2范数超过设定阈值时进行标准化处理,有效控制梯度的大小,确保模型训练稳定性。
梯度裁剪是一种在非常深度的网络(通常是循环神经网络)中用于防止梯度爆炸(exploding gradient)的技术。
执行梯度裁剪的方法有很多,但常见的一种是当参数矢量的 L2 范数(L2 norm)超过一个特定阈值时对参数矢量的梯
度进行标准化,这个特定阈值根据函数:新梯度=梯度 * 阈值 / 梯度L2范数
new_gradients = gradients * threshold / l2_norm(gradients)。</
1488
8751
479
515

被折叠的 条评论
为什么被折叠?