1 随机事件与概率

1.1 样本空间和随机事件

1.1.1 随机事件

        满足的条件:

                (1)可重复性

                (2)可预知性

                (3)随机性

1.1.2 样本空间

        记为S,一般题目中会有写出样本空间,此时为简化解答,通常有:

        用w1表示正面H朝上,w2表示反面T朝上,则该实验的样本空间为S=\begin{Bmatrix} w1, &w2 \end{Bmatrix}

可以用树形图辅助表示

1.1.3 随机事件

        S的某些子集。特别的,由一个样本点组成的单点集为基本事件

        任意随机事件都是样本空间的子集,反之,不一定成立

1.1.4 事件的关系与运算

        包含、相等、交、并、差、互不相容、对立(逆)

       分配率: A\bigcap_{}^{}(B\bigcup C)=AB\bigcup AC

        德·摩根率:\overline{A\bigcup B}=\overline{A}\bigcap_{}^{}\overline{B}

        考法:事件的表示

1.2 事件的概率

1.2.1 古典概率

        两条计数原理:加法(互斥)、乘法(独立)

        (1)有限个基本事件

        (2)每个基本事件的发生是等可能的

        特性:非负性、规范性(归一)、(有限)可加性

        题型:古典概型求概率

        (1)设事件:设A表示。。。。

        (2)易知此实验的样本空间为S={。。。},写出A

        (3)计算

1.2.2 几何概率

        试验结果无穷多,但是等可能,与度量成正比

1.2.3 频率

        频数/重复次数

1.2.4 概率的公理化定义

        一种统一的概率定义

        三条公理:非负性、规范性、可列可加性

1.2.5 概率的性质

        P(B-A)=P(B\overline{A})=P(B)-P(AB)

        P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

1.3 条件概率与乘法定理

1.3.1 条件概率

        公式记住了啊        P(A|B)=\frac{P(AB)}{P(B)}要求P(B)不为0

1.3.2 乘法定理

        上公式变形

1.4 独立性

1.4.1 两个事件的独立性

        判定:P(AB)=P(A)*P(B)

        性质:若独立,则逆和不逆随便两两独立

1.4.2 多个事件的独立性

        如果两两独立,三个也独立,则三个事件独立。任意k个都满足交事件等于乘积

        三个事件相互独立,可以推出题目之间两两独立,反之,不一定成立

        对立也独立,子集也独立,分组也独立

        P(\bigcup_{k=1}^{n}A_{k})=1-\prod_{k=1}^{n}(1-P(A_{k}))

1.5 全概率公式和贝叶斯公式

1.5.1 全概率公式

        完备事件组:事件两两不相交,事件组之和为样本空间,称为一个划分

        公式:P(B)=\sum_{i=1}^{n}P(A_{i})P(B|A_{i})

1.5.2 贝叶斯公式

        根据全概率公式推导,A_{i}为一个划分,P(B)>0,P(A)>0,

        P(A_{i}|B)=\frac{P(A_{i})P(B|A_{i})}{\sum_{j=1}^{n}P(A_{j})P(B|A_{j})}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 概率随机变量与随机过程是概率论的核心概念。 概率是一种衡量事件发生可能性的数学工具。概率论研究随机事件的发生概率,并给出了一些与概率相关的统计规律。 随机变量是概率论中的一种概念,它可以看成是一个实数值的函数,可以用来描述随机现象的不确定性。随机变量可以是离散的,也可以是连续的。离散随机变量的取值只能是一些特定的离散值,而连续随机变量的取值则可以取任意的连续值。 随机过程是一类随机变量序列,它描述的是在时间上变化的随机现象。随机过程通常可以被描述为一种随机函数,它可以在不同的时间点上取到不同的值。随机过程在概率论中是一种非常重要的工具,它可以用于研究很多实际问题,如金融市场、通信系统等。 概率随机变量与随机过程的概念和理论不仅在概率论中有着广泛的应用,也被广泛应用于其他学科中,如物理学、工程学、计算机科学等领域中。对于那些希望深入研究这些问题的人来说,深入理解这些概念和理论非常重要。 ### 回答2: 概率随机变量和随机过程是概率论中的三大基本概念。概率是描述事件发生的可能性大小的数学概念,它描述了事物的不确定性程度。在概率论中,随机变量是指在某个随机试验中所出现的所有可能结果所对应的数值。而随机过程则是一种描述随机现象随着时间变化的数学模型。 在概率论中,我们可以使用概率密度函数(PDF) 来描述随机变量的概率分布。概率密度函数是一个函数,它可以用来计算某个随机变量取某个值的概率。PDF是一种连续型随机变量的概率分布函数,其积分能够等于1,表示变量取值在某个区间内的概率。 而随机过程则是一种包含多个随机变量的概率模型,用于描述随机事件在时间和空间范围内的变化。随机过程的运动轨迹可以被视为一个随机函数,而此函数的概率密度函数则称为概率密度函数。随机过程的概率密度函数被用来描述随机过程的概率分布,它能够提供随机过程在不同时间和空间内取值的概率。 总之,概率随机变量和随机过程是概率论中不可缺少的核心概念。他们之间的联系和区别使用概率密度函数去描述,描述了这个随机对象的性质和变化规律。这些概念在量化风险、模型预测等领域具有重要作用。 ### 回答3: 概率随机变量和随机过程是概率论的重要概念,它们在科学、工程和社会学等领域的应用广泛。 概率是描述事件发生的可能性大小的工具。在概率论中,概率是一个数,范围在0到1之间。当事件发生的可能性越大,概率就越接近于1;相反,当事件发生的可能性越小,概率就越接近于0。 随机变量是随机事件的数学描述。它与概率密度函数(PDF)相关联,可以用来计算事件概率随机变量可以是离散的,比如投硬币的结果可以是正面或反面,也可以是连续的,比如身高或体重。对于离散随机变量,我们可以用概率质量函数(PMF)来描述它的概率分布;对于连续随机变量,我们可以用概率密度函数(PDF)来描述它的概率分布。 随机过程是一组随机变量的集合,它们表示在一定时间范围内的随机变化。它涉及的概念包括均值、方差和协方差。随机过程可以是时变的或静态的,可以是离散的或连续的。 在实际应用中,我们经常需要使用这些概率论的概念来描述实际事件或者进行概率预测。比如说,在金融领域,我们需要用到随机过程来模拟股票价格的波动;在通讯领域,我们需要用到随机变量和随机过程来计算通信信道中的误码率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值