关于函数的学习

函数相关:坐标和坐标系

坐标的实质是有序数对,可以精确地表示一个数

笛卡尔坐标系:二维直角坐标系、三维直角坐标系

笛卡尔~~

“我思故我在”

“越学习,越发现自己的无知”

“怀疑是智慧的源头”

绘图的本质是描点

强推:desmos(滑稽)

强推之二:Calculator Suite - GeoGebra

函数定义

本质上,函数反映了一种映射关系

函数的定义域:自变量的取值范围(自变量所以可取值的集合)

表达符号 一般为:设自变量为x 因变量为y

区间概念!(自变量的取值范围)([]表示闭区间,()表示开区间)

2 ≤ x ≤ 10:[ 2 , 10 ]

2 ≤ x < 10:[ 2 , 10 )

2 < x ≤ 10:( 2 , 10 ]

x ≥ 100:[ 100, +∞)

 x ≤ 100: ( -∞ , 100]

研究函数第一条件:研究定义域,接着研究值域(y的取值范围)

一次函数

定义

通常表示为 y = kx + b 的形式 (其中 k 和 b为常数,k ≠ 0)

当 b = 0 时,该式子叫做正比例函数(它是一种特殊的一次函数)

例如 y = x ; y = 2x.

例如,y = x ^ 2 + 100 和 y = 2 / x +100 都不是一个一次函数

一次函数特质

①倾斜度由k(系数)决定

②左右、上去平移跟 b 的值有关  ( 左加右减 ) ( 上加下减 )

下列函数经过怎样的移动得到对应的函数

y = (1)x - 6 -----> y = x - 4 (上2,左2| - 6 - ( - 4 )  | / 1 = 2

y = 2x - 2 -----------> y = 2x + 4(上6,左3)| - 2 - 4 | / 2 = 3

y = 2x + 4 -----------> y = 2x(上6,左2)|4 - 0 | / 2 = 2 

补充题目

题目1:

参考答案:1. m = 2 ,  n ≠ -1

2. 右(下) 2( | - 2 | / 1 (系数) = 2)

3. b = 1

4. m = -1

5.  k = 5 , b = -11

1. (y2-y1)/(x2-x1)=k=-2,b=5,表达式:y=-2x+5;

2.(y2-y1)/(x2-x1)=k=3,b=0,表达式:y=3x

3. 先算在y轴上的位置(x= 0),y1=3,y2=-1,它们的交点y坐标和x坐标相同,所以得到

-2/3x+3=2x-1,解的x=1.5;

∴S▲=4*1.5/2=3;

二次函数

定义

一次函数:y = kx + b(k≠0,x的指数最高是1)

二次函数:y = kx^2+bx+c(k≠0,x最高指数2)

y = ax^2(a≠0)

特质

a>0,开口向上;a<0,开口向下

如图

|a|越大,开口越窄;反之,越大 

如图

二次函数图像是对称的

(左边随着x的增大而下降,右边随着x的增大而上升)

( a ± b ) ^ 2  =  a ^ 2 + b ^ 2 ± 2 ab 

y = (x-h)^2 <-------------------------------------------> y = x^2-2hx+h^2

顶点式:

!!

当a>0,x<h,y随着x的增大而减小(如图中绿色的部分)

当a>0,x>h,y随着x的增大而增大(如图中红色的部分)

当a<0,x<h,y随着x的增大而增大(如下图蓝色的部分)

当a<0,x>h, y随着x的增大而増小(如下图红色的部分)

二次函数:对称性、单调性(单调递增、单调递减)(就是x的值不同,y的值也不同)

二次函数vs一次函数

二次函数的增长速度更快、阶更高

指数函数

定义

指数是幂运算的a^m(a≠0)中的一个参数,a为底数,m为指数。叫做a的m次幂,也叫做a的m次方

当m=2,成平方,m=3,成立方

a^0 = 1 (a≠0)

常用的指数与幂运算

a^m * a^n  = a ^ (m+n)

a^m / a^n = a ^ (m-n)

(a^m)^n = a^(m*n)

(ab)^n  = a^n * b^n

根式

一般地,如果x^n = a,那么x叫做a的n次方根,其中n>1,且n∈N

如果一个数的平方等于a,则这个数叫做a的平方根

2,-2叫做4的平方根

如果一个数的立方等于a,则这个数叫做a的立方根

-2是-8的立方根,2是8的立方根

小总结:

2^n = a ,2是a的n次方根 

x^n = a,那么x是a的n次方根 

正数的分数指数幂

规定

指数函数

定义

一次函数:y=kx+b(k≠0)

二次函数:y=ax^2+bx+c(a≠0)

指数函数:y=a^x(a>0,a≠1)(下面是原因(为什么是不属于指数函数)

指数增长图像

上图可以打一个形象的比方:你爸有一万块钱,银行利息每年0.05

红线,每次都用当前的数量*(1+0.05),n年后就是1*(1+0.05)^n次方了,40年就已经有40万左右了!

再比如黑线,国王放旗子的那个例子(指数爆炸)(2^x)

小总结

y=a^x

0<a<1,y随x的增大而减小

0>1,y随x的增大而增大

指数函数VS二次函数

所以指数函数增长的比二次函数快

对数函数

定义

a^m =  n (a>0)

定义

2^3 = 8 就说 3 = log2 8 = 3

性质

题目:

log6 3+log 6 2  = log 6(2*3) = 1

log3 3^1024 = 1024* log3 3 = 1024

函数图像

换底公式

我是初中生还不大懂(强推

换底公式_哔哩哔哩_bilibili

各种函数之间的比较

2^x > x^2 > x > log_2x(越往右越快)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值