函数相关:坐标和坐标系
坐标的实质是有序数对,可以精确地表示一个数
笛卡尔坐标系:二维直角坐标系、三维直角坐标系
笛卡尔~~
“我思故我在”
“越学习,越发现自己的无知”
“怀疑是智慧的源头”
绘图的本质是描点
强推:desmos(滑稽)
强推之二:Calculator Suite - GeoGebra
函数定义
本质上,函数反映了一种映射关系
函数的定义域:自变量的取值范围(自变量所以可取值的集合)
表达符号 一般为:设自变量为x 因变量为y
区间概念!(自变量的取值范围)([]表示闭区间,()表示开区间)
2 ≤ x ≤ 10:[ 2 , 10 ]
2 ≤ x < 10:[ 2 , 10 )
2 < x ≤ 10:( 2 , 10 ]
x ≥ 100:[ 100, +∞)
x ≤ 100: ( -∞ , 100]
研究函数第一条件:研究定义域,接着研究值域(y的取值范围)
一次函数
定义
通常表示为 y = kx + b 的形式 (其中 k 和 b为常数,k ≠ 0)
当 b = 0 时,该式子叫做正比例函数(它是一种特殊的一次函数)
例如 y = x ; y = 2x.
例如,y = x ^ 2 + 100 和 y = 2 / x +100 都不是一个一次函数
一次函数特质
①倾斜度由k(系数)决定
②左右、上去平移跟 b 的值有关 ( 左加右减 ) ( 上加下减 )
下列函数经过怎样的移动得到对应的函数
y = (1)x - 6 -----> y = x - 4 (上2,左2)| - 6 - ( - 4 ) | / 1 = 2
y = 2x - 2 -----------> y = 2x + 4(上6,左3)| - 2 - 4 | / 2 = 3
y = 2x + 4 -----------> y = 2x(上6,左2)|4 - 0 | / 2 = 2
补充题目
题目1:
参考答案:1. m = 2 , n ≠ -1
2. 右(下) 2( | - 2 | / 1 (系数) = 2)
3. b = 1
4. m = -1
5. k = 5 , b = -11
1. (y2-y1)/(x2-x1)=k=-2,b=5,表达式:y=-2x+5;
2.(y2-y1)/(x2-x1)=k=3,b=0,表达式:y=3x
3. 先算在y轴上的位置(x= 0),y1=3,y2=-1,它们的交点y坐标和x坐标相同,所以得到
-2/3x+3=2x-1,解的x=1.5;
∴S▲=4*1.5/2=3;
二次函数
定义
一次函数:y = kx + b(k≠0,x的指数最高是1)
二次函数:y = kx^2+bx+c(k≠0,x最高指数2)
y = ax^2(a≠0)
特质
a>0,开口向上;a<0,开口向下
如图
|a|越大,开口越窄;反之,越大
如图
二次函数图像是对称的
(左边随着x的增大而下降,右边随着x的增大而上升)
( a ± b ) ^ 2 = a ^ 2 + b ^ 2 ± 2 ab
y = (x-h)^2 <-------------------------------------------> y = x^2-2hx+h^2
顶点式:
!!
当a>0,x<h,y随着x的增大而减小(如图中绿色的部分)
当a>0,x>h,y随着x的增大而增大(如图中红色的部分)
当a<0,x<h,y随着x的增大而增大(如下图蓝色的部分)
当a<0,x>h, y随着x的增大而増小(如下图红色的部分)
二次函数:对称性、单调性(单调递增、单调递减)(就是x的值不同,y的值也不同)
二次函数vs一次函数
二次函数的增长速度更快、阶更高
指数函数
定义
指数是幂运算的a^m(a≠0)中的一个参数,a为底数,m为指数。叫做a的m次幂,也叫做a的m次方
当m=2,成平方,m=3,成立方
a^0 = 1 (a≠0)
常用的指数与幂运算
a^m * a^n = a ^ (m+n)
a^m / a^n = a ^ (m-n)
(a^m)^n = a^(m*n)
(ab)^n = a^n * b^n
根式
一般地,如果x^n = a,那么x叫做a的n次方根,其中n>1,且n∈N
如果一个数的平方等于a,则这个数叫做a的平方根
2,-2叫做4的平方根
如果一个数的立方等于a,则这个数叫做a的立方根
-2是-8的立方根,2是8的立方根
小总结:
2^n = a ,2是a的n次方根
x^n = a,那么x是a的n次方根
正数的分数指数幂
规定
指数函数
定义
一次函数:y=kx+b(k≠0)
二次函数:y=ax^2+bx+c(a≠0)
指数函数:y=a^x(a>0,a≠1)(下面是原因(为什么是不属于指数函数)
指数增长图像
上图可以打一个形象的比方:你爸有一万块钱,银行利息每年0.05
红线,每次都用当前的数量*(1+0.05),n年后就是1*(1+0.05)^n次方了,40年就已经有40万左右了!
再比如黑线,国王放旗子的那个例子(指数爆炸)(2^x)
小总结
y=a^x
0<a<1,y随x的增大而减小
0>1,y随x的增大而增大
指数函数VS二次函数
所以指数函数增长的比二次函数快
对数函数
定义
a^m = n (a>0)
定义
2^3 = 8 就说 3 = log2 8 = 3
性质
题目:
log6 3+log 6 2 = log 6(2*3) = 1
log3 3^1024 = 1024* log3 3 = 1024
函数图像
换底公式
我是初中生还不大懂(强推
各种函数之间的比较
2^x > x^2 > x > log_2x(越往右越快)